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Conjunctive Query Evaluation

Definition

Input: CQ q, database D
Output: q(D)

Question

How hard is conjunctive query evaluation? How hard are related
questions?

Two (or three?) traditional ways of answering question:

▶ combined complexity

▶ data complexity

▶ parameterized complexity

discuss these and issues with them to motivate fine-grained
complexity
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Combined Complexity

▶ query and database are input

Theorem (Chandra, Merlin 1977, without proof!)

Boolean conjunctive query evaluation is NP-complete.

▶ problem: hardness even on constant size database

▶ know that many queries are easy, would like to understand
them

Stefan Mengel Lower Bounds for Conjunctive Query Evaluation 5 / 59



Data Complexity

▶ only database input, query is fixed

Theorem

For every conjunctive query, evaluation is in AC0 and thus in
PTIME.

▶ very coarse

▶ ∥D∥|q| runtime upper bound, but could be far easier

▶ does not differentiate hard and easy queries
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Parameterized Complexity

▶ input size = size of database, query size parameter

▶ idea: determine influence of query size on complexity

▶ good complexity understanding for classes of queries

▶ still does not help for individual queries
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Fine-Grained Complexity

▶ generally, tries to determine exact exponent for optimal
runtime bounds

▶ hope for query evaluation: determine tight runtime bounds for
individual queries

▶ particular use case: characterization of linear time queries

will survey some of this here, mostly simple arguments, but
fine-grained complexity often far more complicated and technical
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Which Complexity Assumptions?

“classical” approaches use different hardness assumptions

▶ combined complexity: SAT not in polynomial time

▶ parameterized complexity: ETH ≈ SAT takes time 2Ω(n)

fine-grained complexity has many assumptions

▶ triangle finding, 3SUM, SETH, clique problems, matrix
multiplication, . . .

related in complicated ways, not surveyed here, see also Virginia’s
talk
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General Assumptions

Query Restrictions

▶ consider only CQs

▶ self-join free!

Machine Model

RAM: random access, log-size registers, unit-cost, . . .
(see e.g. [Grandjean, Jachiet 22])

Convention

n: size of active domain/number of vertices
m: size of database/number of tuples/number of edges
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Linear Time
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Linear Time:
Boolean Queries
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Boolean Queries

Theorem (Yannakakis 81)

For every acyclic Boolean CQ, there is linear-time algorithm for
query answering.
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Reminder: Queries, Hypergraphs, Acyclicity

q(x1, x2, x3) := ∃y1∃y2∃y3 R1(x1, y3) ∧ R2(y2, y2, y3)

∧ R3(y1, y2, x3) ∧ R4(x2, x3, y2)

y1

x1 y3

y2

x2

x3

y1, y2, y3

x1, y3 y1, y2, x3

x2, x3, y2
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A Converse

Theorem (Brault-Baron 13)

No cyclic Boolean CQ has linear-time algorithm for query
answering assuming some complexity hypotheses.

▶ how to prove this type of result?

▶ what are the hypotheses? and how credible are they?
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The Graph Case

▶ assume first: all atoms arity 2

▶ acyclicity is graph acyclicity, so not having any cycles

▶ then cycle queries should be hard

▶ and even triangle query should be hard

Question

How hard is detecting triangles in graphs?
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The Complexity of Detecting Triangles (I)

Theorem (Nešeťril, Poljak 1985?)

There is an algorithm that in time Õ(nω) decides if given graph G
has a triangle.

▶ ω: matrix multiplication exponent, 2 ≤ ω < 2.371552
[Vassilevska Williams, Xu, Xu, and Zhou 2024]

Proof (sketch).

▶ compute square A2 of adjancency matrix

▶ non-zero entries correspond to pairs connected by 2-path

▶ intersect those pairs with edges
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The Complexity of Detecting Triangles (II)

Theorem (Alon, Yuster, Zwick 1997)

There is an algorithm that in time Õ(m
2ω
ω+1 ) decides if given graph

G has a triangle.

if ω = 2, then Õ(m
4
3 )

Proof (idea).

▶ split vertices by degree ∆

▶ triangle with a low degree vertex easy to find in Õ(m∆)

▶ only 2m/∆ heavy vertices; use algorithm from before for
triangle with only heavy vertices Õ(

(
m
∆

)ω
)

▶ choose ∆ optimally as m
ω−1
ω+1
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2ω
ω+1 ) decides if given graph

G has a triangle.

if ω = 2, then Õ(m
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The Triangle Hypothesis

Hypothesis (Triangle Hypothesis)

No algorithm that in time O(m) decides if given graph has triangle.

Lemma

Assuming the Triangle Hypothesis, no cycle query

qCk := ∃x1 . . . ∃xkE1(x1, x2) ∧ . . . ∧ Ek−1(xk−1, xk) ∧ Ek(xk , x1)

has a linear time algorithm
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Proof by Picture and Corollary

x1 x2

x3

y1 y2

y5 y3

y4

=

=

Corollary

Assuming the Triangle Hypothesis, no cyclic graphlike Boolean CQ
has linear-time algorithm.
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Hypergraphs: Loomis-Whitney Joins

▶ hypergraph acyclicity more complicated

LWk := ∃x1 . . . ∃xk
∧

X⊆{x1,...,xk} : |X |=k−1

RX (X )

x1 x2

x3x4

x1 x2

x5 x3

x4

▶ not clear how to embed triangle in useful way (every set of
size 3 covered)

▶ but also no known linear-time algorithm
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The Hyperclique Hypothesis

▶ h-uniform hypergraph: all edges have size h

▶ k-hyperclique in h-uniform hypergraph: vertex set C of size k
such that every S ⊆ C of size h is edge

Hypothesis (Hyperclique Hypothesis)

For no k > h > 2 there is ε > 0 such that k-hyperclique in
h-uniform hypergraphs can be decided in time Õ(nk−ε).

▶ breaking hypothesis would give surprising algorithms for
Max-k-SAT, so rather believable

▶ cliques in graphs are exception (and indeed have better
algorithms)

▶ graph clique algorithms do not generalize [Lincoln, Vassilevska
Williams, Williams 2018]
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Complexity of Loomis-Whitney Joins – I

Theorem

Assuming Hyperclique Hypothesis, there is no k > 3 and ε > 0

with algorithm for LWk algorithm with runtime Õ(m1+ 1
k−1

−ε).

▶ Õ(m1+ 1
k−1 ) algorithms exist (worst-case optimal join)

▶ rules out linear time algorithm for Loomis-Whitney joins
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Complexity of Loomis-Whitney Joins – II

Theorem

Assuming Hyperclique Hypothesis, there is no k > 3 and ε > 0

with algorithm for LWk algorithm with runtime Õ(m1+ 1
k−1

−ε).

Proof (sketch).

▶ use LWk to solve k-clique in (k − 1)-uniform hypergraph H

▶ database D: all relations contain for every e ∈ E (H) all
permutations; size nk−1

▶ LWk true on D iff H has k-clique

▶ assume Õ(m1+ 1
k−1

−ε) algorithm for LWk , then runtime on D

Õ((nk−1)1+
1

k−1
−ε) = Õ(nk−(k−1)ε)

which breaks the Hyperclique Hypothesis
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Back to Brault-Baron

Lemma (Brault-Baron 2013)

Every cyclic CQ contains as a subquery

▶ a cycle query, or

▶ a Loomis-Whitney query

▶ several related earlier results [Bagan 2009], [Beeri, Fagin,
Maier, Yannakakis 1983] but not quite the same

Theorem (Brault-Baron 2013)

Assuming Triangle and Hyperclique Hypotheses, no cyclic Boolean
CQ has linear-time algorithm.
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Linear Time:
Counting
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Counting Number of Answers

▶ for acyclic join queries Yannakakis-variant in linear time (so
pretty uninteresting here)

Theorem (Pichler, Skritek 2013)

Counting answers to acyclic CQs with projection #P-hard (in
combined complexity)

▶ so something interesting happens with projection

▶ series of papers for understanding projection in combined and
parameterized complexity (see survey for references)

Question

What is impact of projection in fine-grained complexity?
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Detour: SETH and Dominating Set

Hypothesis (Strong Exponential Time Hypothesis (SETH))

For every ε > 0 there is k such that k-SAT cannot be solved in
time Õ(2n(1−ε))

Definition (k-DS)

Input: graph G
Question: is there dominating set of size k in G?

(S dominating set if every vertex in G is in S or neighbor of S)

Theorem (Pătras,cu, Williams 2010)

Assuming SETH, for no k ≥ 3 and no ε > 0, there is algorithm for
k-DS with runtime Õ(nk−ε).
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Example: Dominating Sets

no dominating set
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2-Stars and a Reduction From Dominating Set

Theorem

Assuming SETH, no linear time counting for

q⋆2(x1, x2) := ∃z E1(x1, z) ∧ E2(x2, z).

Proof.
▶ reduce from 4-DS, so let G = (V ,E ) be input

▶ database has relations of size O(n3)

ED
i := {((v1, v2), u) | v1u /∈ E , v2u /∈ E , v1 ̸= u, v2 ̸= u}

▶ choice of x1, x2 in q⋆2 is choice of ≤ 4 vertices in G

▶ x1, x2 not a dominating set iff x1, x2 model of q⋆2 , so number
of 4-DS in G is n4 − |q⋆2(D)|

▶ so 4-DS solved with one call to q⋆2 ; if linear time, then Õ(n3)
algorithm for 4-DS
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2-Stars and a Reduction From Dominating Set

Theorem

Assuming SETH, no linear time counting for

q⋆2(x1, x2) := ∃z E1(x1, z) ∧ E2(x2, z).

▶ can be improved to excluding Õ(m2−ε) by increasing k

▶ can be lifted to bigger stars

▶ idea to reduce from k-DS from [Dell, Roth, Wellnitz 2019],
but adapted for linear time case
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Generalization: Bad Path

Definition (Bad Path)

Bad path in query q(X ): path v1, . . . , vk in hypergraph of q with

▶ v1, vk output variables,

▶ other variables no output variables

▶ v1, vk in no common edge

Example
▶

q⋆2(x1, x2) := ∃z E1(x1, z) ∧ E2(x2, z)

has bad path x1, z , x2

Stefan Mengel Lower Bounds for Conjunctive Query Evaluation 32 / 59



Examples

q(x1, x2, x3) := ∃y1∃y2∃y3 R1(x1, y3) ∧ R2(y2, y2, y3)

∧ R3(y1, y2, x3) ∧ R4(x2, x3, y2)

y1

x1 y3

y2

x2

x3

bad path x1, y3, y2, x2
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Hardness by Bad Paths

Definition (Bad Path)

Bad path in query q(X ): path v1, . . . , vk in hypergraph of q with

▶ v1, vk output variables,

▶ other variables no output variables

▶ v1, vk in no common edge

Theorem

Assuming SETH, if q(X ) contains a bad path, then answers of q
cannot be counted in linear time.

Proof (idea).

embed q⋆2 into bad path
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Free-Connex Acyclic Queries

Definition

Query q(X ) called free-connex acyclic if

▶ it is acyclic, and

▶ it has no bad path

▶ originally from context of enumeration [Bagan, Durand,
Grandjean 2007]

▶ several equivalent definitions

▶ can be generalized into width measure (”star size”) [Durand,
M 2014]
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Counting for Free-Connex Acyclic Queries

Theorem (Brault-Baron 2013)

For every free-connex acyclic query q(X ), answers can be counted
in linear time.

Theorem

Assume the Triangle and Hyperclique Hypotheses and SETH. Then
answer counting for q(X ) can be done in linear time iff q(X ) is
free-connex acyclic.

Proof.
▶ algorithm above

▶ if not acyclic, then hardness from decision

▶ if not free-connex, then counting hardness through bad path
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Linear Time:
Direct Access
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Direct Access Algorithm

Input

Step 1:
Prepro-
cessing Indexed

input

Step 2:
Access

index: 2index: 3index: 1index: 0

index A B C

0 a b c
1 a b’ c
2 a’ b c
3 a’ b’ c

Results

▶ model introduced by [Bagan, Durand, Grandjean, Olive 2008]
in context of enumeration

▶ want polylogarithmic access time

Question

Which preprocessing time necessary for which query?

Local Restriction

Only join queries in this part!
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Local Restriction

Only join queries in this part!
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Known Result

Theorem (Brault-Baron 2013)

For acyclic queries there is direct access algorithm with

▶ linear preprocessing,

▶ logarithmic query time

Question

Getting anwer at index j , but in which order?

Answer

lexicographical order, attribute order depends on shape of query

Question

Can we choose attribute order without degrading runtime?

focus only on polylogarithmic query times from now on
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Example: Lexicographic Orders

q(x1, x2, x3) = R1(x1, x2) ∧ R2(x2, x3)

R1:

x1 x2
a a
a c
b b

R2:

x2 x3
a c
b b
c a

variable order: x1 ≻ x2 ≻ x3

x1 x2 x3
a a c
a c a
b b b
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R1:

x1 x2
a a
a c
b b

R2:

x2 x3
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Prescribing the Order

Question

Getting anwer at index j , but in which order?

Answer

lexicographical order, attribute order depends on shape of query

Question

Can we choose attribute order without degrading runtime?
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Linear Preprocessing

Theorem (essentially Carmeli, Tziavelis, Gatterbauer,
Kimelfeld, Riedewald 2021)

Let q be acyclic, self-join free query.
Assuming the Triangle Hypothesis, direct access with variable order
π and linear preprocessing possible if and only if q and π have no
disruptive trio .

disruptive trio:

▶ variables x , y , z with x ≻ z , y ≻ z

▶ there is atom with variables x , z

▶ there is atom with variables y , z

▶ there is no atom with variables x , y
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Example: Disruptive Trios

q(x1, x2, x3) = R1(x1, x2) ∧ R2(x2, x3)

order: x1 ≻ x2 ≻ x3

x1

x2

x3

no disruptive trio
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Why Disruptive Trios Make Things Hard

▶ allow simulating direct access for

q(x1, x2, z) = R1(x1, z) ∧ R2(x2, z)

with order x1 ≻ x2 ≻ z

▶ binary search allows enumeration and testing for

q(x1, x2) = ∃zR1(x1, z) ∧ R2(x2, z)

which is hard under Triangle Hypothesis
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From Triangles to Disruptive Trios

Lemma

Assuming the Triangle Hypothesis, testing for

q(x1, x2) = ∃zR1(x1, z) ∧ R2(x2, z)

not with linear preprocessing and polylogarithmic testing time.

Proof.

Algorithm for triangle finding in G = (V ,E ):

▶ set R1 = R2 = E and preprocess

▶ for every edge uv ∈ E , check if (u, v) ∈ q(D); if so, found a
triangle

▶ overall runtime:
tpreproc + |E |ttest
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General Queries

Theorem (essentially Carmeli, Tziavelis, Gatterbauer,
Kimelfeld, Riedewald 2021)

Let q be acyclic, self-join free query.
Assuming the Triangle Hypothesis, direct access with variable order
π and linear preprocessing possible if and only if q and π have no
disruptive trio .

▶ proof: simple embedding of query from last slide
▶ generalizations [Bringmann, Carmeli, M 2025]

▶ getting rid of self-join assumption
▶ getting rid of acyclicity
▶ determine optimal runtime for all join queries and variable

orders

Stefan Mengel Lower Bounds for Conjunctive Query Evaluation 46 / 59



General Queries

Theorem (essentially Carmeli, Tziavelis, Gatterbauer,
Kimelfeld, Riedewald 2021)

Let q be acyclic, self-join free query.
Assuming the Triangle Hypothesis, direct access with variable order
π and linear preprocessing possible if and only if q and π have no
disruptive trio .

▶ proof: simple embedding of query from last slide
▶ generalizations [Bringmann, Carmeli, M 2025]

▶ getting rid of self-join assumption
▶ getting rid of acyclicity
▶ determine optimal runtime for all join queries and variable

orders

Stefan Mengel Lower Bounds for Conjunctive Query Evaluation 46 / 59



Beyond Linear Time
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Problems When Going Beyond Linear Time

General approach we have seen

1. use right hardness assumption to show lower bound for one
query

2. embed query in all other hard ones

Problem

Missing both ingredients to generally go beyond linear time:

▶ right hardness assumptions unclear

▶ no general embedding results

Sketch approaches to both problems
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Beyond Linear Time:
Clique Problems
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Complexity of Clique

▶ Clique is starting point for reductions in many areas

▶ would be very useful if k-Clique required time Ω(nk) (false!!!)

Theorem (Nešeťril, Poljak 1985)

Let k be divisible by 3. Then k-Clique on graphs with n vertices
can be solved in time Õ(nωk/3)

Proof (sketch).

given graph G = (V ,E ) construct new graph G ′ = (V ′,E ′) with

▶ V ′ contains all cliques of size k/3 in G as vertices

▶ uv ∈ E ′ ⇔ u ∪ v induces 2k/3-clique in G

constructed in time n2k/3

triangles in G ′ are k-cliques in G , so use fast triangle algorithm
based on matrix multiplication
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Combinatorial k-Clique Algorithms

Hypothesis (Combinatorial k-Clique Hypothesis)

There is no combinatorial algorithm for k-Clique with runtime
Õ(nk−ε).

▶ not formally defined notion

▶ useful: allows excluding fast combinatorial algorithms for
many other problems

▶ but what do we actually show?

Personal Opinion

▶ avoid hypothesis if possible

▶ be very clear about naming! not just “k-Clique Hypothesis”!

▶ discuss short-comings of inferred lower bounds
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Combinatorial Algorithms?

“I know it when I see it”

Stefan Mengel Lower Bounds for Conjunctive Query Evaluation 52 / 59



Combinatorial Algorithms?

No formal definition of “combinatorial algorithm”, take criteria
from [Abboud, Fischer, Shechter 2024]:

▶ practical efficiency: no large hidden factors

▶ elegance: combinatorially interpretable intermediate results

▶ generalizable: e.g. weighted instances, hypergraphs,
generation of solutions

arguably some algorithms in database theory fail some of these
criteria (e.g. PANDA, Courcelle-style algorithms, some counting
algorithms, . . . )
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Weighted Clique

Definition (Min-Weight k-Clique Problem)

Input: graph G with edge weights w : E → Z
Output: minimal sum of edge-weights for k-clique in G

Hypothesis (Min-Weight k-Clique Hypothesis)

There is no k and ε > 0 such that min-width k-clique on can be
solved in time Õ(nk−ε)

▶ increasingly used in fine-grained literature (often for triangles)

▶ matrix multiplication does not seem to help

▶ aggregation over (min,+)-semiring
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Beyond Linear Time:
Clique Embeddings
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Clique Embeddings [Fan, Koutris, Zhao 2023]

▶ idea: solve clique problems by embedding into other queries

x1

x2

x3x4

x5

v1 : x1, x2, x3

v2 : x2, x3, x4

v3 : x3, x4, x5v4 : x4, x5, x1

v5 : x5, x1, x2

▶ properties:
▶ every xi gets mapped somewhere
▶ bags containing xi connected
▶ all pairs xi , xj touch on cycle
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Lower Bound by Clique Embedding

Lemma

Assuming Min-k-Clique Hypothesis, no algorithm with runtime

Õ(m
5
4
−ε) for any ε > 0 for aggregation on 5-cycle query over

(min,+)-semiring.

Proof idea.
▶ input graph G with n vertices and edge weights

▶ choose database D such that query result is 5-cliques of G ,
size n4

▶ aggregation over (min,+) gives minimal weight of clique in G

▶ runtime Õ(m
5
4
−ε) = Õ(n4·(

5
4
−ε)) = Õ(n5−4ε) breaks

Min-Weight-k-Clique Hypothesis
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More on Clique Embeddings

▶ can be developed into a general framework [Fan, Koutris,
Zhao 2023]

▶ gives some tight bounds for aggregation and combinatorial
algorithms

▶ also lower bounds for submodular width

▶ unfortunately, generally not tight
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Conclusion

▶ understand linear time queries pretty well for decision,
counting but also enumeration, direct access

▶ self-joins add some subtlety

▶ a lot to do for superlinear case, only direct access for
lexicographic orders well understood

▶ more results and lots of references in survey on arxiv
https://arxiv.org/abs/2506.17702

read also enumeration tutorial [Berkholz, Gerhardt,
Schweikardt 2020]

Thank you for your attention!
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