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Part I

Motivation
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Escher’s Local vs. Global

Day and Night, woodcut, Escher 1938.

[Low resolution image downloaded from Wikipedia]
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Relational database consistency (on the triangle schema)

R(X ,Y ) S(Y ,Z ) T (Z ,X ) W (X ,Y ,Z )

1 1 1 2 2 1 1 1 2
1 2 1 3 2 2 1 1 3
2 1 2 3 3 1 2 1 2
3 2 3 3 3 2 3

1 2 3

W[X,Y] = R W[Y,Z] = S W[Z,X] = T

R,S ,T are consistent
W is a witness of their consistency.
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Relational database consistency (arbitrary schema)

Let X1, . . . ,Xm be a schema.
Let R1(X1), . . . ,Rm(Xm) be relations over that schema.

Definition [BFMY’83]
The relations R1(X1), . . . ,Rm(Xm) are consistent if there exists a
relation W (X1 · · ·Xm) that projects on Xi to Ri , for i = 1, . . . ,m;
i.e.,

W [X1] = R1 W [X2] = R2 · · · W [Xm] = Rm

We say that W is a witness of their consistency.

- pairwise consistent: any two are consistent,
- k-wise consistent: any k are consistent,
- globally consistent: all together are consistent.
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Joins do the job ... right?

Basic fact about relations:

If R(X ) and S(Y ) are consistent relations,
then their join R ⋊⋉ S witnesses their consistency.

BUT not so for “real-world relations”, i.e., bags.

The bag-join is not a witness of consistency for bags. [AK’21]

R(X ) S(Y ) W (X ,Y ) J(X ,Y ) J[X ] J[Y ]

a1 b1 a1 b1 a1 b1 a1 b1
a2 b2 a2 b2 a1 b2 a1 b2

a2 b1 a2 b1
a2 b2 a2 b2
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A more general problem

Let data come annotated with side information (αi , βj , γk , . . .).

R(X ,Y ) S(Y ,Z ) T (Z ,X ) W (X ,Y ,Z )

a1 b1 : α1 c1 d1 : β1 e1 f1 : γ1 g1 h1 i1 : ?
a2 b2 : α2 c2 d2 : β2 e2 f2 : γ2 g2 h2 i2 : ?

· · · · · · · · · · · ·
am bm : αm cn dn : βn ep fp : γp gq hq iq : ?

Questions:
How should data be annotated/measured/compared/aggregated?

Given data, does it come from a common source?
Can we reconstruct the source?
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Example 1: Image reconstruction and tomography

Cormack-Hounsfield 1979 Nobel in Physiology or Medicine
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Example 2: Quantum theory, EPR, and Bell inequalities

Do measurements reflect “elements of physical reality”?
[EPR’35, NYT’35, B’64]

https://www.nytimes.com/1935/05/04/archives/einstein-attacks-quantum-theory-scientist-and-two-colleagues-
find.html?smid=url-share
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Measuring two classical Head/Tail coins

In classical mechanics, the uncertainty of an experiment can be
modelled by hidden variable theories. E.g.,

Coin 1 Coin 2 Wit : λ Wit : λ etc

H : 1/2 H : 1/2 HH : 1/4 HH : 1/2
T : 1/2 T : 1/2 HT : 1/4 HT : 0

TH : 1/4 TH : 0
TT : 1/4 TT : 1/2

The hidden variable theories model elements of physical reality.
Facts are “already there”, just unknown before measurement.
The hidden variable theory need not be unique.
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Measuring two quantum entangled particles
In quantum mechanics, states are unit vectors and measurements
are orthogonal projection operators that collapse the state. E.g.,

B1 =

[
1 0
0 0

]
C1 =

[
+1/2 −1/2+
−1/2 +1/2+

]

B2 =

[
0 0
0 1

]
C2 =

[
+1/2 +1/2+
+1/2 +1/2+

]
A consequence of Bell’s analysis in [B’64] is that the combined
system does not admit compatible measurements.

Particle 1 Particle 2 Wit?

b1 : B1 c1 : C1 b1c1 : X11?
b2 : B2 c2 : C2 b1c2 : X12?

b2c1 : X21?
b2c2 : X22?

Ergo: no local hidden variable theory can model entanglement.
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Part II

Annotated Relations
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Annotations from an algebraic structure

- Set semantics use True (1) and False (0) as annotations.
- Bag semantics uses natural numbers as annotations.
- Semiring semantics uses annotations from a semiring:

A semiring is an algebraic structure K = (K ,+,×, 0, 1) where
(K ,+, 0) and (K ,×, 1) are commutative monoids (associative and
commutative with neutral element), and × distributes over +.

Examples:
- Two-element Boolean algebra B = {0, 1} with ∨ and ∧,
- Natural numbers N with + and ×,
- Extended real numbers R ∪ {±∞} with min and max.
- Extended real numbers R ∪ {±∞} with min and + (tropical).
- ...
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Semiring semantics in database theory

Extensively studied in last two decades:
- Provenance [GKT’07, KG’12, DGNT’21].
- Query containment [G’11, KRS’14].
- Datalog and recursion [KNPSW’24, DGNT’21].

Key idea 1:
- Addition + is used for “alternative information” (or/projection).
- Multiplication × is used for “joint information” (and/join).

Key idea 2:
- To define consistency, only the additive structure is relevant.
- As noted earlier for bags, the standard join (×) may not witness.
- To model consistency, positivity (defined next) is natural.
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Positive commutative monoids

A positive commutative monoid is an algebraic structure
K = (K ,+, 0) where + is an associative and commutative
operation on K , with neutral element 0, which satisfies positivity:

x + y = 0 implies x = 0 and y = 0.

Examples

- Boolean monoid: B = {true, false} with ∨ and false.
- Powerset monoid: P(S) with ∪ and ∅ for some set S .
- Bag monoid: N with + and 0.
- Real-valued measures: R≥0 with + and 0.

- POVM of dimension d : Rd×d
⪰0 with + and 0.

- Tropical/Cost monoid: R ∪ {∞} with min and ∞.
- Access control [GT’17]: P < S < T < I with min and I.
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K-relations and their projections
Let K = (K ,+, 0) be a positive commutative monoid.
Let X be a set of attributes with domain D.

A K-relation R(X ) of schema X is a map R : DX → K with finite
support

Supp(R) := {t ∈ DX : R(t) ̸= 0}.

For Y ⊆ X , the Y -projection denoted R[Y ] is the K-relation of
schema Y defined on every Y -tuple r by

R[Y ](r) :=
∑
t∈DX :
t[Y ]=r

R(t)

Fact. Positivity of K ensures projection commutes with support:

Supp(R[Y ]) = Supp(R)[Y ].
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Consistency of relations over monoids

Let K be a positive commutative monoid.
Let X1, . . . ,Xm be a schema.
Let R1(X1), . . . ,Rm(Xm) be K-relations over that schema.

Definition [AK’24]
The K-relations R1(X1), . . . ,Rm(Xm) are consistent if there exists
a K-relation W (X1 · · ·Xm) that projects on Xi to Ri , for
i = 1, . . . ,m; i.e.,

W [X1] = R1 W [X2] = R2 · · · W [Xm] = Rm

We say that W is a witness of their consistency.

- pairwise consistent: any two are consistent
- k-wise consistent: any k are consistent
- globally consistent: all together are consistent
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Part III

Inner Consistency
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A weaker form of consistency
Definition [AK’24]
Two K-relations R(X ) and S(Y ) are called inner consistent if

R[X ∩ Y ] = S [X ∩ Y ].

Fact. For every positive commutative monoid:

consistency =⇒ inner consistency

Indeed:
Let R(X ) and S(Y ) be K-relations.
Let Z = X ∩ Y be the common attributes.
Let W (X ,Y ) witness consistency.
Then:

R[Z ] = W [X ][Z ] = W [Z ] = W [Y ][Z ] = S [Z ].
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Monoids and inner consistency

Question. For which positive commutative monoids

inner consistency
?

=⇒ consistency

Coming up:

- Boolean monoid: YES the standard join
- Powerset monoid: YES intersections of annotations
- Tropical/cost monoid: YES maxima(!) of annotations
- Real-valued measures: YES normalized volume
- Bag monoid: YES! flow theory
- POVM: NO.

plus

a characterization and its consequences
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From inner consistency to consistency by solving equations

R(X ,Y ) S(Y ,Z ) W (X ,Y ,Z )

a1 c1 : α1 c1 d1 : β1 a1 c1 d1 : x11?
a2 c1 : α2 c1 d2 : β2 a1 c1 d2 : x12?
a3 c1 : α3 a2 c1 d1 : x21?

a2 c1 d2 : x22?
a3 c1 d1 : x31?
a3 c1 d2 : x32?

The inner consistency assumption is, in this case,
α1 + α2 + α3 = β1 + β2

The consistency witness is, in this case, any solution to the system
x11 + x12 = α1

x21 + x22 = α2

x31 + x32 = α3

x11 + x21 + x31 = β1
x12 + x22 + x32 = β2
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Instances of the Transportation Problem TP(m,n)

Given α1, . . . , αm and β1, . . . , βn such that

α1 + · · ·+ αm = β1 + · · ·+ βn

find xij such that

x11 + x12 + · · · + x1n = α1

+ + +
x21 + x22 + · · · + x2n = α2

+ + +
...

...
. . .

...
+ + +
xm1 + xm2 + · · · + xmn = αm

q q q
β1 β2 βn
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Characterization

Characterization Theorem [AK’24].
For every positive commutative monoid K, the following
statements are equivalent:

(1) Every two K-relations that are inner consistent are consistent.
(2) Every instance of TP over K is feasible.
(3) Every instance of TP(2,2) over K is feasible.

We say that K has the inner consistency property
We say that K has the transportation property

Indeed:
(1) ⇐⇒ (2) : done; see two slides back from this one.
(2) ⇐⇒ (3) : known from the theory of weighted automata [S’07];
see also two slides forward from this one.
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Transportation property failling: an example

Nq = bag monoid with addition truncated to q, for q ≥ 2.

It’s a positive commutative monoid.
The precondition

1 + (q − 1) = 1 + q (in Nq)

holds, BUT the following system is infeasible:

x11 + x12 = 1
+ +
x21 + x22 = q − 1
q q
1 q

It suffers from the “short blanket dilemma” at x22; i.e.,
By Row 1 & Col 2 we need x22 ≥ q − 1.
By Col 1 & Row 2 we need x22 ≤ q − 2.
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Reduction from (m × n) to (m × 2), then to (2× 2)

1. Set β = β1 + · · ·+ βn−1.

2. Split into two systems (variables y1, . . . , ym are new):

y1 + x1n = α1 x11 + · · · + x1(n−1) = y1
+ + + +
...

...
...

. . .
...

+ + + +
ym + xmn = αm xm1 + · · · + xm(n−1) = ym
q q q q
β βn β1 βn−1

3. Recurse.
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Solving 2× 2 instances in special cases

α1 + α2 = γ = β1 + β2

x11 + x12 = α1

+ +
x21 + x22 = α2

q q
β1 β2

Boolean monoid/powerset/tropical/... distributive lattices:

(αi ∧ β1) ∨ (αi ∧ β2) = αi ∧ (β1 ∨ β2) = αi ∧ (α1 ∨ α2) = αi

Real-valued measures/tropical semiring/... semifields:

αiβ1/γ + αiβ2/γ = αi (β1 + β2)/γ = αiγ/γ = αi
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Solving 2× 2 transportation for bag monoid
Bag monoid 2× 2 instance:

x11 + x12 = α1

+ +
x21 + x22 = α2

q q
β1 β2 γ = α1 + α2 = β1 + β2

Set:

x11 = min(α1, β1) totally ordered
x12 = α1 − x11 non-negative!
x21 = β1 − x11 non-negative!
x22 = γ −max(α1, β1) non-negative!

Unrolling the induction gives the Northwest Corner Method
from the theory of linear programming [AK’24].
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Part IV

Local vs Global Consistency

28 / 43



Vorobe’v and BFMY Theorems

Vorobe’v Theorem. [V’68]
For all collections X1, . . . ,Xm of sets of random variables, TFAE:

(1) X1, . . . ,Xm forms a regular simplicial complex.
(2) Every collection of probability measures on X1, . . . ,Xm that is
pairwise consistent is consistent.

Beeri-Fagin-Maier-Yannakakis Theorem. [BFMY’83]
For all collections X1, . . . ,Xm of sets of attributes, TFAE:

(1) X1, . . . ,Xm is the set of edges of an acyclic hypergraph.
(2) Every collection of relations over X1, . . . ,Xm that is pairwise
consistent is consistent.
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Hypergraph acyclicity: a database theory classic

1. Acyclicity was introduced in the BFMY paper

“On the Desirability of Acyclic Schemes”

with many different equivalent characterizations.

2. The equivalent concept of join-tree is contemporary to
Roberston and Seymour’s tree-width and tree-decompositions of
Graph Minors I/II (early 80’s).

3. It is a key component in Yannakakis’ (1981) fundamental
join-tree algorithm for conjunctive query evaluation.

4. Non-trivially generalizes graph acyclicity [F’83].

Berge acyclic < γ-acyclic < β-acyclic < α-acyclic
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Generalizing Vorobe’v and BFMY Theorems

Theorem. [AK’24]
Let K be a positive commutative monoid that has the
transportation property. For all collections X1, . . . ,Xm of sets of
attributes, TFAE:

(1) X1, . . . ,Xm is the set of edges of an acyclic hypergraph.
(2) X1, . . . ,Xm has the local-to-global (L2G) property on K; i.e.,
every collection of K-relations on X1, . . . ,Xm that is pairwise
consistent is consistent.

Corollary. BFMY acyclicity and Vorobe’v regularity coincide.

[A direct proof of corollary is also doable... and more natural.]
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Proof of necessity : L2G implies acyclicity (1/2)

Note: The proofs in BFMY and V do not generalize (at all).

Theorem [AK’24]
If H0 is a d-regular & k-uniform hypergraph with d ≥ 2 and k ≥ 2,
then H0 fails L2G on K.

Theorem (reformulated from [BFMY’83])
If H is non-acyclic, then Cn ≤G H or Sn ≤G H for some n ≥ 3.

Lemma [AK’24]
If H0 ≤G H and H0 fails L2G on K, then H fails L2G on K.

Fact
Cn is 2-regular and 2-uniform.
Sn is (n − 1)-regular and (n − 1)-uniform.
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Proof of necessity : L2G implies acyclicity (2/2)

Assume H0 = {X1, . . . ,Xm} is d-regular and k-uniform.
Fix arbitrary ℓ : {1, . . . ,m} → Z/dZ such that

ℓ(1) + · · ·+ ℓ(m) ̸≡ 0 mod d .

Such a labelling ℓ exists if d ≥ 2 and m ≥ 1.

Fix arbitrary α∗ ∈ K \ {0}.
Define Ri (Xi ) : (Z/dZ)k → K by

Ri (a1, . . . , ak) := dk · α∗ iff a1 + · · ·+ ak ≡ ℓ(i) mod d

where dk · α∗ := α∗ + · · ·+ α∗ (dk times).

pairwise consistent: by k ≥ 2 and uniformity of Z/dZ-subspaces.
globally inconsistent: by d-regularity and

∑m
i=1 ℓ(i) ̸≡ 0 mod d .
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Proof of sufficiency : acyclicity implies L2G (1/1)

Assume K has the transportation property.
Then:

Yannakakis join-tree algorithm
specialized to full conjunctive queries

works also for K-relations

when

inner consistency =⇒ consistency

which, here, is the case by the Characterization Theorem.
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Part V

Back to Bell
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Transportation property failing for POVMs

Let’s argue that the analysis of Bell Inequalities ([B’64]) leads to:

Fact.
For all d ≥ 2, the positive commutative monoid Rd×d

⪰ of POVM
with component-wise + does not have the transportation property.

Recall:
Rd×d
⪰ : the set of positive semi-definite (PSD) matrices M ∈ Rd×d .

PSD: symmetric and such that zTMz ≥ 0 holds for all z ∈ Rd .
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The counterexample
The matrices

B1 =

[
1 0
0 0

]
C1 =

[
+1/2 −1/2+
−1/2 +1/2+

]

B2 =

[
0 0
0 1

]
C2 =

[
+1/2 +1/2+
+1/2 +1/2+

]
are PSD, they satisfy

B1 + B2 = C1 + C2

BUT the following system is infeasible in PSD matrices:

X11 + X12 = B1

+ +
X21 + X22 = B2

q q
C1 C2
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The certificate of infeasibility is a Bell inequality

Set

A1 =

[
+1 +1+
+1 −1+

]
A2 =

[
−1 +1+
+1 +1+

]
and

M := A1X11 + A2X12 − A1X21 − A2X22.

Using the assumption that the Xij satisfy the system we have:

(1) tr(M) = tr(2I) = 4

(2) tr(M) ≤ (
∑

ijtr(Xij))(maxi∥Ai∥) ≤ tr(I)
√
2 = 2

√
2

I.e., A Bell inequality fails;
a “quantum short blanket dilemma” of sorts.
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Part VI

CONCLUSIONS
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Key ideas and findings

Key ideas:
- Following recent trend (e.g., provenance), data comes annotated.
- In the study of consistency, positive monoids are enough.

Key finding 1:
- Inner consistency of data is necessary for its coherent existence.
- But it is not always sufficient: see Nq, and Bell scenarios.

Key finding 2:
- Sufficiency of locality is ensured by the transportation property.
- The sufficiency extends to all acyclic scenarios.
- It does not extend to any non-acyclic scenario whatsoever.
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An open-ended question

Conventional wisdom has been that data ought to be globally
consistent – reminiscent of “an element of physical reality”.

BUT IT IS RARELY ENFORCED!

Are there computational or information-theoretic advantages in
explicitly giving up on global consistency of data?

[If witnessed, quantum advantage may be an answer,
but maybe not the only answer]
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Maybe not the only answer...

Day and Night, woodcut, Escher 1938.

[Low resolution image downloaded from Wikipedia]
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