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Conjunctive Regular Path Queries 2.0

What Do Cypher, SQL/PGQ, GQL Patterns add to CRPQs?

(a) handling of nodes and edges

(b) path and list variables ~ we'll get to this
(c) path modes ~ simple, trail,...
(d) data filters ~ data value comparisons

The “Four Features”

How do we cleanly define these? so that we can study them

How do we cleanly desion these in a real-world language? EENeRd IR {19/ iR ISR

Query Language Design! Nice!

(c) [Bagan, Bonifati, Groz PODS’13] [M., Trautner ICDT’18] [M., Niewerth, Trautner STACS20] [M., Popp PODS22]
(d) [Neven, Schwentick, Vianu TOCL'04] [Bojanczyk et al. PODS’06, LICS’06] [Libkin, M., Vrgoc ICDT’13]



The Broader Context



Big %estions

Database Metatheory:
Asking the Big Queries

Christos H. Papadimitriou
University of California San Diego

PODS 1995




Big %estions

Quiz

What is the most important open research question for database theory?

=Cr——

My humble opinion

Can we make set semantics perform in practice?

Why is this question important?
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Why Am I Talkmg About Graphs & Sets & Bags?

...because everything is connected

~~

(https://imgflip.com/memegenerator/268702234/Charliethinkingits-all-connectedconnect-the-dot)

'))

“Everything is connected!



Bags & Recursion: Boom!

Bag

Semantics

Query ((((@*)™)*)*

Data

Every answer 1is

returned 10%°° times

Smoking gun

>
6-clique for bags:

every edge labeled a

Simple
Paths
| Arenas, Conca, Pérez WWW’12]



What Are We Doing
in (Query) Language Design?



Language Design: The Goal?

Usetul to give us direction

Automatic Programming
- Allowing human programmers to code at a significantly higher level
- Focusing on the problem that needs solving, not on its “administrative aspects”

We, the DB community (theory & systems) are great at this

- Declarative query languages
- Automatic optimization, qutomatic out-of-core computation, etc.

The only thing is that we're doing it just for DB queries

Why not think bigger? Molham Aref
Can we target more general-purpose programming? Thursday 17:00

y ‘ SIGMOD Industry 6
If so, then our languages better be well-designed! Be there

We need the right principles! [ kid you not
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Will we
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Where We Are

We wanted to do query language design in graph pattern matching



Graph Pattern Matching Landscape

—CRPQs + the “Four Features”

This paper

distilling from practice

<

I-CRPQs
(3.1.4-3.1.5)

dI-CRPQs
(3.2.1-3.2.2)

¥ ~ Here there Core GQL
gPlQlS) ((:,?f %S - be monsters : GQL [5((3)P£(3:1] <« SQL/PGQ
- % >~ Regular * (uncharted) @  (4.1) ’ (67, 68]
queries RO TPR
(3.1.3)
|
| edge-labeled graphs |
| |
| property graphs |
1987 1990 2015 2025 2023 2019-...
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Why Theory Is Needed

Example 1 )

L pathsfromxtoy

(x) ( ()-[ :Follows]->() ){2} (y)

»edge labeled “Follows”

—— -
(--) node -1 edge

Follows

Follows

Equivalent to

— repeat the edge 2 times

Output:
N1 N3
N2 N\
N3 N2

(x) ( ()-[:Follows]->() ) ( ()-[:Follows]->() ) (Y)
(X) ( ()-[:Follows]->()-[:Follows]->() ) (Vy)



Why Theory Is Needed
BT o o

(x) ( ()-[z:Follows]->() ){2} (y) »edge labeled “Follows”, in variable z
| B — repeat the edge 2 times

Follows

Output: z

N1 N3 | [E12, E23°
N2 N1 [E23, E31
N3 | N2 | [E31, E12°

Follows

Not equivalent to any of

(x) ( ()-[z:Follows]->() ) ( ()-[z:Follows]->() ) (Y)
(X) ( ()-[2:Follows]->()-[2z:Follows]->() ) (V)
(X) ( ()-[2zl:Follows]->()-[z2:Follows]->() ) (Yy)



Why Theory Is Needed
 paths of even length

-[ :Follows ]-> -[:Follows]-> +
(x) ( ( )-=I ws]=>( )-I ws]=->( ) )+ (y) _ »edgeslabeled“Follows”

Follows

Output
(tI’ ails OHIY) N§ N3
Follows Follows \ 2 \. 1
N3 N2




Why Theory Is Needed
 paths of even length

-[ :Follows ]-> -[:Follows ]-> +
(x) ( (z)-[ ws]=->(z)-[ ws]=->( ) )+ (y) _ »edgeslabeled“Follows”

\using variable z

Follows

Output:  Nothing!

Follows Follows

Why ?




Why Theory Is Needed
 paths of even length

-[ :Follows ]-> -[:Follows ]-> +
(x) ( (z)-[ ws]=->(z)-[ ws]=->( ) )+ (y) _ »edgeslabeled“Follows”

\using variable z

Follows Follows

Follows

Output:
N1 | N3 [N1,N2] ...and others

Follows Follows

Again, why?




Why Theory Is Needed

(z)-[:Follows]->(z)-[:Follows]->( )

Syntax-driven design!




Why Theory Is Needed

(X) ( (z)-[:Follows]->(z)-[:Follows]->( ) )+ (Yy)

Follows Follows
Follows

Output:

N1 | N3 [[N1, N2]

Follows

Need to separate concerns? (Joins «— Lists)

If you think about it as CRPQs, then
- the RPQs are about matching paths

Syntax—driven design! - the CRPQ vars are about joining




Why Theory Is Needed
Wel done;

Cypher
P = (x) ( (u)-[ ]->(v) WHERE u.date < v.date)* (y) ———— SQL/PGQ
Paths from x to y, where dates increase on nodes GQL

Intermezzo: in SQL, you'd need to start with...

WITH good edge(S,T) AS
SELECT Source.N ID AS S, Target.N ID AS T
FROM Source, Target, Dates D1, Dates D2
WHERE Source.E ID = Target.E ID
AND D1.N ID=Source.N ID AND D2.N ID = Target.N ID
AND Dl.date < D2.date
RECURSIVE path n(S, T) AS
SELECT * FROM good edge
UNION
SELECT good edge.S, path n.T
FROM good edge, path n
WHERE good edge.T=path n.S
ELECT * FROM path n

n
=




Why Theory Is Needed

Example 3

p = (x) ( (u)-[ ]->(v) WHERE u.date < v.date)* (y)

Paths from x to y, where dates increase on nodes

How do you do paths from x to y, where dates increase on edges?

Umm....

(x) ( (u) -

]=>(Vv) WHERE u.date < v.date)* (y)

(x) ( —[u]=>(

) =[Vv]-> WHERE u.date < v.date)* (y)

(x) ( —[u]=>(

) =[v]->() WHERE u.date < v.date)* (y)

increasing on nodes /

not increasing on edges X

not increasing on edges X

~» match 1 3 2 4



[t Looks Like There’s
Work To Be Done Here



Wait, Weren't You People on ISO?

Agreement | Controveny

high

3« ¥ULL
high

NULL ¢ NULL
ezdi=n

JUM{A, KULL)
Fadi=m

MIN{39, wULL)

sow{woLL, woLL)

30(30 # NULZ 0 + WULL)
GROCY Y (WULL NOLL)




Wait, Weren't You People on ISO?

You don’t have total control

Apple is like a ship, Shout out to

with a hole in the bottom, , g Made sense of

leaking water . ~ 2%  _ constant stream of proposals
and my job is - each with dozens of pages

to get the ship © - in standardese

pointed Nadime Victor

in the right direction Francis Marsault

B

—Steve Jobs

B R




What Now ?

Where to go?

'This is the starting point of the paper — we’ve only just gone through the intro

We're going to propose something. Let’s first argue why we are proposing it.
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What’s Next in the Talk?

growing from theory distilling from practice
> ¢
v " | Here there GOL
RPQs CRPOs * _—— | k .- GPC
(3.11) — (3.12) . bemonsters | [50,51] + ORPOR
o 7% >~ Regular )  (uncharted) : | (4.1) | ’ [67, 68]
queriles | e el —
(3.1.3)
edge-labeled graphs
property graphs
We choose to tollow These principles seem to work very well
(1) compatibility with automata - definitions become elegant
(2) set semantics - fewer semantic issues
(3) symmetric treatment of nodes and edges - alotof potential for query optimization

(language becomes “more declarative”)



Growing From Theory



CRPQs with List Variables

n rl.
g(Xiy ... X)) = /\yi—>zl- N1
i=1

- Output variables: X1y .nes X

- Join variables: Vs 2y« vs Yigs Zn

- Regular expressions: ry,....7, capability to return elements

along matched paths
Current GQL
()-[2:Follows]->()-[2:Follows]->() -+~ z 1S a joln variable
( ()-[2:Follows]->()-[2z:Follows]->() )+ w z isa list” variable

(called group variable in GQL)



CRPQs with List Variables
CRPQs with List Variables

n r n 3
g(Xi5 .05 X)) = /\yi—>zl- g(Xi5 -5 X)) = /\yl-—>Z,-
i=1 i=1
Ingredients Ingredients
- Outputvariables:  xy,...,x; - Output variables:  x,...,x,
- Join variables: V15 245 + s Ygs Zon - Join variables: Vs Zys +evs Vigs 2
- Regular expressions: ry, ...,r, - Regular expressions
with list variables: r,...,7,

Keep join variables & list variables separated

We'll soon see why



REs with List Variables

- ~ T -
ey 2 ey _
U el -
Tl «
.

Follows

E41 | Follows

— Follows " .

E34

|Fagin, Kimelfeld, Reiss, Vansummeren PODS’13
|Riveros, Van Sint Jan, Vrgoc VLDB’23]
| Doleschal, Kimelfeld, M., Nahshon, Neven PODS’19’

M., Niewerth, Popp, Rojas, Vansummeren, Vrgoc VLDB23| <«

| Farias, M., Rojas, Vrgoc ISWC’24]

( Follows* + Likes )*

- Paths in which every edge is labeled Follows or Likes
- Annotate the Follows edges with variable z

Path: E13 —E34 — F41 — E12 — E23
Z Z Z

+~ z binds to [E34, E12, E23]

Why a Design Like This?

Such REs
~ (1) are highly compatible with automata

<

- (2) allow a product graph construction

Again, Why?

(1) w Enables more query optimization

(2) ~ Enables factorization for matching paths




CRPQs with Data & List Variables

------- Transfer
date 1/1/25

---------- We're Going to Add
N1 | name: Rebecca N2 | name: Mike

- node & edge treatment
- data filters

L es—— T

Transfer

| date: 1/1/24 E23.date. 1/2/25

--------------

E13

--------------

Increasing date values on edges

N3 | name: Megan

J [Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])

---------------



CRPQs with Data & List Variables

RLEEERE Transfer

+ date: 1/1/25

..... L We're Going to Add

- node & edge treatment
- data filters

-  Transfor JRORNEEE ----\- -
: : : » date: 1/1/24 : : : .
E4l | date: 1/1/24 7 Cate /7724 B S (172725 | Increasing date values on edges
E13
[Transfer Z]
' date: 1/3/25
""" E34 Register

Considered path:



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
BORAR .. oo FORTEE AW ... : *
: : : v date: 1/1/24 : : : .
E41 i date: 1/1/24 3 | date /4724 - B23idate 172725 Increasing date values on edges
E13
[Transfer Z]
' date: 1/3/25
""" E34 Register

Considered path:



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
R  Transfer Rt RN .o *
: : : v date: 1/1/24 : : : .
E4l jdate: 1/1/24 ; ;qate 1124 B2 date 172725 Increasing date values on edges
E13
[Transfer Z]
' date: 1/3/25
""" E34 Register

Considered path: E12
<



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
o 4  Transrer JEREEE RO e
E41 {date: 1/1/24 ;  date: ;113/ 25 E23idate1/2/25 | Increasing date values on edges

[Transfer Z] [x = date]

' date: 1/3/25

---------------

E34 Register

Considered path: E12
<



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
o 4  Transrer JEREEE RO e
E41 {date: 1/1/24 ;  date: ;113/ 25 E23idate1/2/25 | Increasing date values on edges

[Transfer Z] [x = date]

' date: 1/3/25

---------------

£34 Register x = 1/1/25

Considered path: E12
<



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
o 4  Transrer JEREEE RO e
E41 {date: 1/1/24 ;  date: ;113/ 25 E23idate1/2/25 | Increasing date values on edges

[Transfer ] [x := date] (

' date: 1/3/25

---------------

£34 Register x = 1/1/25

Considered path: E12
<



CRPQs with Data & List Variables

’—----

:date: 1/1/25

We're Going to Add

E12
N2 - node & edge treatment
- data filters
—  Transtor FEREE N e
E41 : date: 1/1/24 + |} date: 1/1/24 E23: date: 1/2/25

--------------

--------------

Increasing date values on edges

--------------

E13

| Transfer*| [x := date] (( _)

' date: 1/3/25

------ B34 Register x = 1/1/25

Considered path: E12
<



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

-~ I - - - .-

We're Going to Add

E12
N2 - node & edge treatment
- data filters
o 4  Transrer JEREEE RO e
E41 {date: 1/1/24 ;  date: ;113/ 25 E23idate1/2/25 | Increasing date values on edges

| Transfer*| [x := date] (( _)

' date: 1/3/25

---------------

£34 Register x = 1/1/25

Considered path: E12——N2
<



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

E12
N1l | name: Rebecca N2
o\

E41 ' date: 1/1/24 date 1/1/24 ; E23: date: 1/2/25 1

--------------

We're Going to Add

- node & edge treatment
- data filters

LT e

--------------

Increasing date values on edges

--------------

N3 | name: Megan

J [Transfer Z] [x = date] (( B ) [Transfer Z]

--------- 53 Register x = 1/1/25

Considered path: E12——N2
<



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

We're Going to Add

- node & edge treatment
- data filters

------ Transfer Faaassas Transfer - -

! date: i 1 date: 1/1/24 I date: :
E4l | cate: 1/1/24 | + B23,date: 1/2/25 Increasing date values on edges

--------------

E13

--------------

| Transfer*| [x := date] (( B )  Transfer*|

' date: 1/3/25

------ B34 Register x = 1/1/25

Considered path: E12——N2 E23
< <



CRPQs with Data & List Variables

’—- | ]
Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2

: date: . rdate: 1/1/24 1 I date: :
E41 | date: 1/1/24 7 | €ate: 1/2/24 + B23,date: 1/2/25 Increasing date values on edges

We're Going to Add

- node & edge treatment
- data filters

LT e

N — MeganJ [Transfer Z] [x .= date] ((_) [Transfer Z] [date > x]

N4 l name: Jay !

' date: 1/3/25

---------------

E34 Register x = 1/1/25

Considered path: E12——N2 E23
< <



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2

: date 1/1/24 » | :
E41 | date: 1/1/24 } . E23 \_“fe 1/2/25 A Increasing date values on edges

We're Going to Add

- node & edge treatment
- data filters

L es—— T

--------------

Register x = 1/1/25 date =1/2/25 V/

Considered path: E12——N2 E23
< <



CRPQs with Data & List Variables

’—- | ]
Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2

: date: . rdate: 1/1/24 1 I date: :
E41 | date: 1/1/24 7 | €ate: 1/2/24 + B23,date: 1/2/25 Increasing date values on edges

We're Going to Add

- node & edge treatment
- data filters

LT e

N — MeganJ [Transfer Z] [x .= date] ((_) [Transfer Z] [date > x]

N4 l name: Jay !

' date: 1/3/25

---------------

E34 Register x = 1/1/25

Considered path: E12——N2 E23
< <



CRPQs with Data & List Variables

’—- | ]
Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2

: date: . rdate: 1/1/24 1 I date: :
E4l | cate: 1/1/24 | + B23,date: 1/2/25 Increasing date values on edges

We're Going to Add

- node & edge treatment
- data filters

LT e

--------------

E13

--------------

J [Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])

N3 | name: Megan

N4 l name: Jay !

' date: 1/3/25

---------------

E34 Register x = 1/1/25

Considered path: E12——N2 E23
< <



CRPQs with Data & List Variables

’—- | ]
Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2

: date: . rdate: 1/1/24 1 I date: :
E4l | cate: 1/1/24 | + B23,date: 1/2/25 Increasing date values on edges

We're Going to Add

- node & edge treatment
- data filters

LT e

--------------

E13

--------------

J [Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])

N3 | name: Megan

N4 l name: Jay !

' date: 1/3/25

---------------

E34 Register X = 1/2/25

Considered path: E12——N2 E23
< <



CRP Qs with Data & List Variables

,-
IIdau:e 1/1/25 4

E12
N1 | name: Rebecca N2

d : date 1/1/24 : | : :
B4l cate 171728 o L ! E23, date: 1/2/25 ¥ Increasing date values on edges

®2® Transfer
date 1/3/25

---------------

E34 Register X = 1/2/25

We're Going to Add

- node & edge treatment
- data filters

LT e

[Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])

Considered path: E12——N2 E23——N3
< <



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2
L > Y

We're Going to Add

- node & edge treatment
- data filters

LT e

: date 1/1/24 B :
E41 ; _d_a_te_ FAE Sailniakal  B23, _“jte 2l Increasing date values on edges
%
[Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])
N4 | name: Jay N3

------ Transfer

date 1/3/25 1

R Y Register x = 1/2/25

Considered path: E12——N2 E23——N3 E34
< < <



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |

E12
N1 | name: Rebecca N2
L > Y

We're Going to Add

- node & edge treatment
- data filters

LT e

: date 1/1/24 B :
E41 ; _d_a_te_ FAE Sailniakal  B23, _“jte 2l Increasing date values on edges
%
[Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])
N4 | name: Jay N3

------ Transfer

date 1/3/25 1

‘---- R 4

E34 Register x = 1/3/25

Considered path: E12——N2 E23——N3 E34
< < <



CRPQs with Data & List Variables

’—----

Pdate: 1/1/25 |
“TE12 We're Going to Add
N1 | name: Rebecca N2 - nOde & edge trecatment

/ \ - data filters
e=-L--  Transter PRty e Tzanser - B

: date: . rdate: 1/1/24 1 I date: :
E4l | cate: 1/1/24 | + B23,date: 1/2/25 Increasing date values on edges

----------------------------

[Transfer Z] [x = date] ((_) [Transfer Z] [date > x] [x = date])

N4 | name: Jay

ldate: 1/3/25 1

‘mem - - P

E34 Register x = 1/3/25
paths don’t need to be
node-to-node
Considered path: E12——N2 E23—— N3 E34 w(as in GQL) .

< $ $



CRPQs with Data & List Variables

Increasing date values on nodes

node-to-node

(Transfer?) (x = date) ( ] (Transfer?) (dace > x) (x = dace) ) *

Symmetry! ’ e

Transfer] [x := date ((_) Transfer?] [date > x| [x := date ) *

e

paths

edge-to-edge
paths

Increasing date values on edges



B AS k' N il L -““‘.-&o-"'o—uth"-h-.a e R P —

— - -

https://www.raullara.net/wp-content/uploads/2023/07/Reflective-Symmetry-art-1024x576.jpg



CRPQs with Data & List Variables

Increasing date values on nodes

node-to-node

(Transfer?) (x = date) ( ] (Transfer?) (dace > x) (x = dace) ) *

Symmetry! ’ e

Transfer] [x := date ((_) Transfer?] [date > x| [x := date ) *

e

paths

edge-to-edge
paths

Increasing date values on edges



Distilling From Practice



RPQs
(3.1.1)

Distilling From Practice

growing from theory distilling from practice
> <
1-CRPQs o dl-CRPQs ETUORU
CRPOs (3.1.4-3.1.5) (3.2.1-3.2.2) '. Here there GPC GOQL
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Results About Distilled Models

| Gheerbrant, Libkin, Peterfreund, Rogova ICDT 25

The RPQ (aa)* is not expressible using Cypher patterns

Theorem | Gheerbrant, Libkin, Peterfreund, Rogova PVLDB’25]
“Increasing values on edges” cannot be expressed without repeating variables
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Section 7

7 Where To Go: Road Map for Future Research

We conclude by outlining some directions for further study.

7.1 Language Design — Moderate Steps

It is not yet clear what exact role GQL will play in the development
of graph languages. It could play a role of a pre-SQL language like
QBE [117] or QUEL [104]. Or it could play the role of the first 1986
SQL standard that took a number of years to become what we
know as SQL today. Either way, analyzing the expressive power
and complexity of the current language design (and its abstractions)
has a significant role to play in the development of future versions
of GQL and SQL/PGQ.

Inexpressibility Toolkit. Query languages for property graphs are
still fairly recent and their theoretical analysis has only just begun
(Section 5 presented some early isolated results). The situation is
somewhat similar to the state of finite model theory in the early
days of relational languages. At that time, it produced isolated
results, such as the inexpressibility of parity and transitive closure
in first-order logic, and it took decades to develop a proper toolkit
that allows us to use off-the-shelf tools, such as locality or zero-one
laws, to prove more complex results [77]. Today, we are proving
isolated results about particular graph queries and particular graph
query languages, and the theory community has much to offer to
help build a toolkit for analyzing graph languages at scale.

A Logic for Graphs. Theoretical analysis of relational query lan-
guages often relies on their connection to first-order logic and its
extensions. A logic for graph query languages should give paths a
central role. In standard relational queries, a single domain suffices.
However, graph queries require logic that captures the structure
of paths and their connection to nodes and edges. Standard many-
sorted logic falls short because nodes, edges, and paths are not
independent: Paths are formed from sequences of the two others.
Hence, the logic should include constructs for navigating between
these elements, for example, building a path from nodes and edges,
retrieving path endpoints, etc. Two good starting points are the
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walk logic [65], designed for graph querying with support for path
quantification, and the theory of concatenation [96], developed
for strings but potentially adaptable to paths. Since the theory of
concatenation is undecidable, we can consider its finite model coun-
terpart which enjoys efficient model checking and captures various
complexity classes when extended with operators for transitive
closures or fixed point [54].

Evaluation Algorithms. In terms of query evaluation, the new
features bring tons of challenges. Concerning path and list vari-
ables, the recurring story is that studies have looked at single RPQs,
but little is known about CRPQs. For instance, it is interesting to
study how compact representations for RPQ results interact with
joins. But even for single RPQs, there are still interesting avenues
to explore. We mentioned the framework of enumerating one out-
put after another, but one could also study enumerating only the
difference between consecutive outputs. Concerning paths, an in-
teresting direction to look at could be Eppstein’s data structure
for enumerating the k shortest paths [39]. Concerning path modes,
the current standards allow combinations, such as returning short-
est concatenations of a trail and a simple path. To the best of our
knowledge, the community has not even started investigating how
to deal with such queries. Concerning data filters, an interesting
next step is to see whether register automata can be extended to
treat both nodes and edges symmetrically, as dI-RPQs do, and to see
how to incorporate list variables into their runs. Of course, the main
question here would be whether efficient enumeration algorithms
could be designed, implemented, and integrated into query engines.
Furthermore, we need to get a better idea of the size of intermediate
query results in practice. Whereas existing practical studies focuses
on structure of queries only [62, 82], we need to get a better idea of
how these interact with the data.

Relational Algebra over Pattern Matching. Languages like GQL
and SQL/PGQ apply relational algebra operators to relations ex-
tracted from graphs via pattern matching. There is a natural in-
terplay between these two layers: some relational operations cor-
respond to constructs in pattern matching, and can be pushed
down to or lifted from the pattern matching layer. Exploring this
interaction can support optimization, e.g., by reducing the size of in-
termediate results (similarly to techniques applied in the context of
document spanners [37, 53]), and provide insights on the expressive
power, e.g., by guiding the development of normal forms of queries.
Another non-trivial question on the intersection with traditional
techniques is how to develop cardinality estimation approaches
for (C)RPQs. Finally, over the last decade we have seen impressive
progress on worst-case optimal evaluation of conjunctive queries,
with the celebrated AGM bound [11] and the subsequent race to-
wards optimal algorithms. For CRPQs we have seen little progress
so far, and some initial results show that it might be a challenging
task [32, 70].

Parametrized Complexity. Aiming to mirror the successful line of
research on conjunctive queries, spanning from the Yannakakis al-
gorithm for evaluating acyclic CQs [115], through various alorithms
for CQs with bounded treewidth and other width measures [26,
58, 60], and culminating in the celebrated dichotomies [27, 59, 88],
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the academic community has been investigating parametrized com-
plexity of CRPQs for over a decade now. Semantic treewidth, i.e.,
the minimal treewidth of an equivalent query, has been proposed
as a candidate criterion to characterize fixed-parameter tractability
of CRPQs [16, 99]. While equivalent queries with optimal treewidth
can be computed and used for efficient query evaluation [42, 46],
no dichotomies have been established so far.

Compositionality. CRPQs are not compositional, in the sense that
they do not allow nesting, and neither are their extensions I-CRPQs
and dI-CRPQs we have considered here. Meanwhile, SQL/PGQ and
GQL allow using Kleene star over arbitrary patterns, which — to-
gether with the ability to use repeated variables for performing
joins — gives them the full power of regular queries [50]. An impor-
tant step in building faithful abstractions of graph query languages
will be then to bring regular queries into the picture. A concrete
challenge is reconciling regular queries with path modes.

Static Analysis. The complexity of query containment, the fun-
damental static analysis problem, is well understood for query
languages working with edge-labeled graphs, such as CRPQs [23,
44, 45, 48] and regular queries [97]; for CRPQs there are even re-
sults on containment in the presence of schema constraints [61].
However, the effect of new features, such as list variables and data
tests, is barely explored [73].

7.2 Language Design Revisited — Big Steps

The first versions of SQL/PGQ and GQL are already standard-
ized [67, 68] and it is unclear if future versions will include major
changes, such as treating nodes and edges symmetrically from the
ground up or making the design of patterns fully compatible with
automata. The latter would help make languages more declarative
and amenable to optimization.

Theoretical research, however, does not need to be tied to com-
patibility with existing standards and can investigate freely how
features such as (a)-(d) from the introduction can be added to
query languages. In fact, theoretical guidance on these matters is
extremely important to avoid ad-hoc solutions with unwanted side
effects. Even if our community’s results may not arrive in time
for current versions of these languages, architectures come and
go [102, 103] and query languages can be revised, but theorems
are forever [108]. We believe that important principles to keep in
mind when designing future (graph) query languages are (1) sym-
metry, (2) compatibility with automata, (3) set semantics, and (4)
compositionality.

Finally, let us mention that, in our experience, input from the
database theory community continues to be appreciated in query
language design efforts. Some of us were involved in the standard-
ization of SQL/PGQ and GQL since the beginning and, while not
having full control, could steer the design towards more sustainable
choices on several occasions. More recently, we were all involved
in the design of Rel [8], a new language that aims at bridging the
gap between query languages and programming in the large, and
supports both relational and graph querying. The design of Rel
takes wisdom from the database theory community seriously —
notably, it uses set semantics — and we are excited to see how it
will evolve in the future.
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Build Systems

- Implement our ideas
- Make them work efhiciently
- Or learn why this is impossible

— o — | M., Niewerth, Popp, Rojas, Vansummeren, Vrgoc VLDB23
| Farias, M., Rojas, Vrgoc ISWC"24

...




Graphs vs Relations

What Goes Around Comes Around?

Big Questions Again?

Sets?  Bags?
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Graph Query Languages

For the query language,
the underlying DB architecture
(graph, relational,...)

is irrelevant

. T

Cypher / GQL «~ implemented in >ﬂ904j graph native
«~ implemented in graph native
SQL/PGQ «~ implementedin ~ ORACLE relational
«~ implemented in 0 DuckDB relational
L can be
translated «~ implemented in ¢.> Relational AT relational

into Rel + set semantics!
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Wrapping Up

New graph query languages add

(a) handling of nodes and edges
(b) path and list variables
(c) path modes

(d) data filters
to Conjunctive Regular Path Queries

How would we design features like this

in a graph query language?

Our proposal:
- |-CRPQ:s
- dI-CRPQ:s
(see paper)

Their design in the standard(s) isn’t smooth yet
~ we have work to do

What can you do?

- Study these new CRPQs

- Come up with your own design?

- Study GQL & SQL/PGQ

- Do RPQs in Datalog

- Prove that sets are better than bags
- Prove that bags are better than sets
- Solve Automatic Programming

.




Thank you!

Happy to talk to you in the break!



