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Conjunctive Regular Path ueries 2.0
What Do Cypher, SQL/PGQ, GQL Patterns add to CRPQs?
(a) handling of nodes and edges 
(b) path and list variables 
(c) path modes 
(d) data filters

 we’ll get to this⇝
 simple, trail,…⇝
 data value comparisons⇝

(c) [Bagan, Bonifati, Groz PODS’13] [M., Trautner ICDT’18] [M., Niewerth, Trautner STACS’20] [M., Popp PODS’22] 
(d) [Neven, Schwentick, Vianu TOCL’04] [Bojanczyk et al. PODS’06, LICS’06] [Libkin, M., Vrgoc ICDT’13]

How do we cleanly define these?

How do we cleanly design these in a real-world language?

so that we can study them

so that they can be used

uery Language Design! Nice!

e “Four Features”



e Broader Context



Big uestions

PODS 1995



Big uestions

uiz
What is the most important open research question for database theory?

Why is this question important?

My humble opinion

Can we make set semantics perform in practice?



Sets Bags 
(Multisets)

Database Research Landscape

eory Systems

divide
why?

Con sets: more costly union & project 
                         more data structure overhead 
Pro sets: more room for query optimization   
Pro sets: …

⇝

(https://www.geologyin.com/2024/05/ri-valleys.html)



Why Am I Talking About Graphs & Sets & Bags?

“Everything is connected!”

…because everything is connected

(https://imgflip.com/memegenerator/268702234/Charliethinkingits-all-connectedconnect-the-dot)



[Arenas, Conca, Pérez WWW’12]

6-clique
every edge labeled a

((((a*)*)*)*uery

Data Every answer is 
returned  times10269

Bag 
Semantics

≺
Simple 
Paths

Smoking gun 
for bags?

Bags & Recursion: Boom!



What Are We Doing  
in (uery) Language Design?



Language Design: e Goal?
Useful to give us direction

Automatic Programming  
- Allowing human programmers to code at a significantly higher level 
- Focusing on the problem that needs solving, not on its “administrative aspects” 

We, the DB community (theory & systems) are great at this 
- Declarative query languages 
- Automatic optimization, automatic out-of-core computation, etc.
e only thing is that we’re doing it just for DB queries
Why not think bigger?
Can we target more general-purpose programming?
If so, then our languages better be well-designed!

Molham Aref

We need the right principles!

Jim Gray

ursday 17:00 
SIGMOD Industry 6 

Be there 
I kid you not



Will we 
survive?

Humanity

Science

Computer Science
Computer Science

Is  ?P ≠ NP

Abundant 
clean 

energy Databases

Database eory

Graph Database eory
Efficiency, 
 Efficiency, 
   Efficiency

Are sets 
the right 
model?

Automatic 
Programming

CQ bag  
containment

Proper data 
independence

We go here again



Where We Are

We wanted to do query language design in graph pattern matching



Graph Pattern Matching Landscape

1990
[Consens, Mendelzon PODS’90]

1987
[Cruz et al.  SIGMOD’87]

2015
[Reutter et al. ICDT’15]

2019-…
[ISO ’23, ’24]

2023
[Francis et al. PODS’23]

[Francis et al. ICDT’24]

2025
[Gheerbrant et al. VLDB’25]

is paper

CRPQs + the “Four Features”



Example 1

Why eory Is Needed

Equivalent to
(x) ( ()-[:Follows]->() ) ( ()-[:Follows]->() ) (y)
(x) ( ()-[:Follows]->()-[:Follows]->() ) (y)

(x) ( ()-[ :Follows]->() ){2} (y)

paths from x to y
edge labeled “Follows”
repeat the edge 2 times

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

name:   Mike
x y

N1 N3
N2 N1
N3 N2

Output: name:  Rebecca  name:   Mike

name:  Megan

Follows

Follows

node edge(…)
[…]



Example 1

Why eory Is Needed

(x) ( ()-[z:Follows]->() ){2} (y)

Not equivalent to any of
(x) ( ()-[z:Follows]->() ) ( ()-[z:Follows]->() ) (y)
(x) ( ()-[z:Follows]->()-[z:Follows]->() ) (y)

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

(x) ( ()-[z1:Follows]->()-[z2:Follows]->() ) (y)

paths from x to y
edge labeled “Follows”
repeat the edge 2 times

, in variable z

x y z
N1 N3 [E12, E23]
N2 N1 [E23, E31]
N3 N2 [E31, E12]

Output: name:  Rebecca  name:   Mike

name:  Megan

Follows

Follows



Example 2

Why eory Is Needed

(x) ( ( )-[:Follows]->( )-[:Follows]->( ) )+ (y)
paths of even length
edges labeled “Follows”

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

x y
N1 N3
N2 N1
N3 N2

Output:
(trails only)



Why eory Is Needed

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

Nothing!

Why?

Example 2
(x) ( (z)-[:Follows]->(z)-[:Follows]->( ) )+ (y)

paths of even length
edges labeled “Follows”
using variable z

Output:



Why eory Is Needed

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

Output:

Follows Follows

Again, why?

x y z
N1 N3 [N1, N2]

Example 2
(x) ( (z)-[:Follows]->(z)-[:Follows]->( ) )+ (y)

paths of even length
edges labeled “Follows”
using variable z

…and others



Why eory Is Needed

              z

Follows
Follows

Example 2
      (z)-[:Follows]->(z)-[:Follows]->( )       

         … 

Syntax-driven design!



Why eory Is Needed

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

Follows

E12

E23

Follows Follows

Output:

Example 2
(x) ( (z)-[:Follows]->(z)-[:Follows]->( ) )+ (y)

x y z
N1 N3 [N1, N2]

Need to separate concerns? ( Joins    Lists)⟷

Syntax-driven design!

Follows
E31

 name:  Rebecca  name:   Mike

name:  Megan

Follows

Follows

Follows Follows

If you think about it as CRPQs, then 
- the RPQs are about matching paths  
- the CRPQ vars are about joining



Why eory Is Needed

Paths from x to y, where dates increase on nodes

Example 3
p = (x) ( (u)-[ ]->(v) WHERE u.date < v.date)* (y)

Intermezzo: in SQL, you’d need to start with…
WITH good_edge(S,T) AS
  SELECT Source.N_ID AS S, Target.N_ID AS T
  FROM Source, Target, Dates D1, Dates D2
  WHERE Source.E_ID = Target.E_ID 
    AND D1.N_ID=Source.N_ID AND D2.N_ID = Target.N_ID 
    AND D1.date < D2.date
RECURSIVE path_n(S, T) AS
  SELECT * FROM good_edge
  UNION
  SELECT good_edge.S, path_n.T
  FROM good_edge, path_n
  WHERE good_edge.T=path_n.S
SELECT * FROM path_n

Well done!  
Cypher 

SQL/PGQ 
GQL



Why eory Is Needed

How do you do paths from x to y, where dates increase on edges?

Example 3
p = (x) ( (u)-[ ]->(v) WHERE u.date < v.date)* (y)

p = (x) ( -[u]->( ) -[v]->   WHERE u.date < v.date)* (y) not increasing on edges❌

p = (x) (  (u) -[ ]->(v)     WHERE u.date < v.date)* (y) increasing on nodes ✓

p = (x) ( -[u]->( ) -[v]->() WHERE u.date < v.date)* (y) not increasing on edges❌

Umm….

Paths from x to y, where dates increase on nodes

   match  1  3  2  4⇝



It Looks Like ere’s 
Work To Be Done Here



Wait, Weren’t You People on ISO?



Wait, Weren’t You People on ISO?

—Steve Jobs

You don’t have total control

Apple is like a ship,  
with a hole in the bottom, 
leaking water 
and my job is 
to get the ship 
pointed  
in the right direction 

Victor 
Marsault

Shout out to

Nadime  
Francis

Made sense of 
- constant stream of proposals 
- each with dozens of pages 
- in standardese



What Now?

is is the starting point of the paper — we’ve only just gone through the intro

Where to go?

We’re going to propose something. Let’s first argue why we are proposing it.

Paper:



Research Agenda

Sets

Automata

Declarative

uery Languages  
in eory Bags

Syntax-Driven
Efficient

Actually work in practice

Systems
Prove advantages  of our principles!

Make them work in practice!
(https://www.geologyin.com/2024/05/ri-valleys.html)



What’s Next in the Talk?

ese principles seem to work very well
- definitions become elegant 
- fewer semantic issues 
- a lot of potential for query optimization

(language becomes “more declarative”)

We choose to follow
(1) compatibility with automata 
(2) set semantics 
(3) symmetric treatment of nodes and edges



Growing From eory



CRPQs with List Variables
We want to add:

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

FollowsFollows

E12

E23E31

capability to return elements  
along matched paths

Current GQL
    ()-[z:Follows]->()-[z:Follows]->()
  ( ()-[z:Follows]->()-[z:Follows]->() )+ 

 z is a join variable⇝
 z is a “list” variable⇝

(called group variable in GQL)

Ingredients
- Output variables:          
- Join variables:                 
- Regular expressions :   

x1, …, xk
y1, z1, …, yn, zn
r1, …, rn

Standard CRPQs

   =     q(x1, …, xk)
n

⋀
i=1

yi
ri zi



CRPQs with List Variables
CRPQs with List Variables

   =     q(x1, …, xk)
n

⋀
i=1

yi
ri zi

Ingredients
- Output variables:          
- Join variables:                
- Regular expressions  

with list variables:       

x1, …, xk
y1, z1, …, yn, zn

r1, …, rn

Keep join variables & list variables separated
We’ll soon see why

Ingredients
- Output variables:          
- Join variables:                 
- Regular expressions :   

x1, …, xk
y1, z1, …, yn, zn
r1, …, rn

Standard CRPQs

   =     q(x1, …, xk)
n

⋀
i=1

yi
ri zi



REs with List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

Follows

Follows

Follows

E12

E23

E34

name:  Jay

LikesLikesE41

N4

- Paths in which every edge is labeled Follows or Likes 
- Annotate the Follows edges with variable z

E13

 Follows   Likes ( z + )*

Path: E13 — E34 — E41 — E12 — E23
z z z

Why a Design Like is?
Such REs  
(1) are highly compatible with automata  
(2) allow a product graph construction

Again, Why?
(1)  Enables more query optimization 
(2)  Enables factorization for matching paths

⇝
⇝

  binds to [E34, E12, E23]⇝ z

[Fagin, Kimelfeld, Reiss, Vansummeren PODS’13] 
[Riveros, Van Sint Jan, Vrgoc VLDB’23] 

[Doleschal, Kimelfeld, M., Nahshon, Neven PODS’19]

[M., Niewerth, Popp, Rojas, Vansummeren, Vrgoc VLDB’23] 
[Farias, M., Rojas, Vrgoc ISWC’24]



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data filters

Transfer [ z]  := date[x ]((_) Transfer [ z] date > [ x]  := date[x ])*
Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

Considered path:

Register

Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path:

Register

Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

Register

Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register

Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

( )*
Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_) )*
Increasing date values on edges



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

)*
Increasing date values on edges

name:   Mike



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z] )*
Increasing date values on edges

name:   Mike



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z]

E23
z

)*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z]

E23
z

date > [ x] )*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z]

E23
z

date > [ x] )*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer

date = 1/2/25 ⇝



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z]

E23
z

date > [ x] )*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x 1/1/25=

((_)

N2

Transfer [ z]

E23
z

date > [ x]  := date[x ])*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x =

((_)

N2

Transfer [ z]

E23
z

date > [ x]  := date[x ])*
Increasing date values on edges

name:   Mike

date:  1/2/25
Transfer

1/2/25



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
Transfer

We’re Going to Add
- node & edge treatment 
- data lters

Transfer [ z]

date:  1/1/25
Transfer

Considered path: E12
z

 := date[x ]

Register x =

((_)

N2

Transfer [ z]

E23
z

date > [ x]  := date[x ])*

N3

Increasing date values on edges

name:   Mike

name:  Megan

date:  1/2/25
Transfer

1/2/25



CRPQs with Data & List Variables

N1

name:  Megan

name:   MikeN2

N3

name:  Rebecca

E12

E23

E34

name:  Jay

E41

N4

E13

date:  1/1/25
Transfer

date:  1/1/24
Transfer

date:  1/2/25
Transfer

date:  1/3/25
Transfer

date:  1/1/24
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Transfer   := date   Transfer  date >   := date( z) (x ) ([_] ( z) ( x) (x ))*
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Results About Distilled Models

eorem                      [Gheerbrant, Libkin, Peterfreund, Rogova ICDT’25]

e RPQ  is not expressible using Cypher patterns(aa)*

eorem                                                           [Gheerbrant, Libkin, Peterfreund, Rogova PVLDB’25] 
“Increasing values on edges” cannot be expressed without repeating variables

…
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this work leverages the product graph, but extends it so that paths
of a speci!c type (shortest, trail, etc.) can be returned. Although
determining whether a simple path or trail between two given
nodes exists is already NP-complete [13, 83, 89], practical results
show that this approach is actually feasible [41, 110] since queries
and graphs used in practice are usually well behaved [62, 82, 87].
Works such as [34, 41, 110] also show how to avoid completing
the entire pre-processing phase before staring to enumerate the
results, which makes them highly relevant for real-world systems
that implement a pipelined approach to query execution.

Data Filters. The idea of using variables to store values for data
tests in graph-structured data (Section 3.2.1) comes from [78, 79].
The evaluation complexity for these expressions (without list vari-
ables) was studied only as a decision problem that checks whether
a pair of nodes is connected by a path conforming to the RPQ with
data tests, showing the problem to be PSPACE-complete in com-
bined complexity and NLOGSPACE-complete in data complexity.
These results use a variation of register automata [69] that operate
on paths in a graph, and a modi!cation of the product construction.

7 Where To Go: Road Map for Future Research
We conclude by outlining some directions for further study.

7.1 Language Design — Moderate Steps
It is not yet clear what exact role GQL will play in the development
of graph languages. It could play a role of a pre-SQL language like
QBE [117] or QUEL [104]. Or it could play the role of the !rst 1986
SQL standard that took a number of years to become what we
know as SQL today. Either way, analyzing the expressive power
and complexity of the current language design (and its abstractions)
has a signi!cant role to play in the development of future versions
of GQL and SQL/PGQ.

Inexpressibility Toolkit. Query languages for property graphs are
still fairly recent and their theoretical analysis has only just begun
(Section 5 presented some early isolated results). The situation is
somewhat similar to the state of !nite model theory in the early
days of relational languages. At that time, it produced isolated
results, such as the inexpressibility of parity and transitive closure
in !rst-order logic, and it took decades to develop a proper toolkit
that allows us to use o"-the-shelf tools, such as locality or zero-one
laws, to prove more complex results [77]. Today, we are proving
isolated results about particular graph queries and particular graph
query languages, and the theory community has much to o"er to
help build a toolkit for analyzing graph languages at scale.

A Logic for Graphs. Theoretical analysis of relational query lan-
guages often relies on their connection to !rst-order logic and its
extensions. A logic for graph query languages should give paths a
central role. In standard relational queries, a single domain su#ces.
However, graph queries require logic that captures the structure
of paths and their connection to nodes and edges. Standard many-
sorted logic falls short because nodes, edges, and paths are not
independent: Paths are formed from sequences of the two others.
Hence, the logic should include constructs for navigating between
these elements, for example, building a path from nodes and edges,
retrieving path endpoints, etc. Two good starting points are the

walk logic [65], designed for graph querying with support for path
quanti!cation, and the theory of concatenation [96], developed
for strings but potentially adaptable to paths. Since the theory of
concatenation is undecidable, we can consider its !nite model coun-
terpart which enjoys e#cient model checking and captures various
complexity classes when extended with operators for transitive
closures or !xed point [54].

Evaluation Algorithms. In terms of query evaluation, the new
features bring tons of challenges. Concerning path and list vari-
ables, the recurring story is that studies have looked at single RPQs,
but little is known about CRPQs. For instance, it is interesting to
study how compact representations for RPQ results interact with
joins. But even for single RPQs, there are still interesting avenues
to explore. We mentioned the framework of enumerating one out-
put after another, but one could also study enumerating only the
di"erence between consecutive outputs. Concerning paths, an in-
teresting direction to look at could be Eppstein’s data structure
for enumerating the 𝐿 shortest paths [39]. Concerning path modes,
the current standards allow combinations, such as returning short-
est concatenations of a trail and a simple path. To the best of our
knowledge, the community has not even started investigating how
to deal with such queries. Concerning data !lters, an interesting
next step is to see whether register automata can be extended to
treat both nodes and edges symmetrically, as dl-RPQs do, and to see
how to incorporate list variables into their runs. Of course, the main
question here would be whether e#cient enumeration algorithms
could be designed, implemented, and integrated into query engines.
Furthermore, we need to get a better idea of the size of intermediate
query results in practice. Whereas existing practical studies focuses
on structure of queries only [62, 82], we need to get a better idea of
how these interact with the data.

Relational Algebra over Pattern Matching. Languages like GQL
and SQL/PGQ apply relational algebra operators to relations ex-
tracted from graphs via pattern matching. There is a natural in-
terplay between these two layers: some relational operations cor-
respond to constructs in pattern matching, and can be pushed
down to or lifted from the pattern matching layer. Exploring this
interaction can support optimization, e.g., by reducing the size of in-
termediate results (similarly to techniques applied in the context of
document spanners [37, 53]), and provide insights on the expressive
power, e.g., by guiding the development of normal forms of queries.
Another non-trivial question on the intersection with traditional
techniques is how to develop cardinality estimation approaches
for (C)RPQs. Finally, over the last decade we have seen impressive
progress on worst-case optimal evaluation of conjunctive queries,
with the celebrated AGM bound [11] and the subsequent race to-
wards optimal algorithms. For CRPQs we have seen little progress
so far, and some initial results show that it might be a challenging
task [32, 70].

Parametrized Complexity. Aiming to mirror the successful line of
research on conjunctive queries, spanning from the Yannakakis al-
gorithm for evaluating acyclic CQs [115], through various alorithms
for CQs with bounded treewidth and other width measures [26,
58, 60], and culminating in the celebrated dichotomies [27, 59, 88],
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the academic community has been investigating parametrized com-
plexity of CRPQs for over a decade now. Semantic treewidth, i.e.,
the minimal treewidth of an equivalent query, has been proposed
as a candidate criterion to characterize !xed-parameter tractability
of CRPQs [16, 99]. While equivalent queries with optimal treewidth
can be computed and used for e"cient query evaluation [42, 46],
no dichotomies have been established so far.

Compositionality. CRPQs are not compositional, in the sense that
they do not allow nesting, and neither are their extensions l-CRPQs
and dl-CRPQs we have considered here. Meanwhile, SQL/PGQ and
GQL allow using Kleene star over arbitrary patterns, which — to-
gether with the ability to use repeated variables for performing
joins — gives them the full power of regular queries [50]. An impor-
tant step in building faithful abstractions of graph query languages
will be then to bring regular queries into the picture. A concrete
challenge is reconciling regular queries with path modes.

Static Analysis. The complexity of query containment, the fun-
damental static analysis problem, is well understood for query
languages working with edge-labeled graphs, such as CRPQs [23,
44, 45, 48] and regular queries [97]; for CRPQs there are even re-
sults on containment in the presence of schema constraints [61].
However, the e#ect of new features, such as list variables and data
tests, is barely explored [73].

7.2 Language Design Revisited — Big Steps
The !rst versions of SQL/PGQ and GQL are already standard-
ized [67, 68] and it is unclear if future versions will include major
changes, such as treating nodes and edges symmetrically from the
ground up or making the design of patterns fully compatible with
automata. The latter would help make languages more declarative
and amenable to optimization.

Theoretical research, however, does not need to be tied to com-
patibility with existing standards and can investigate freely how
features such as (a)–(d) from the introduction can be added to
query languages. In fact, theoretical guidance on these matters is
extremely important to avoid ad-hoc solutions with unwanted side
e#ects. Even if our community’s results may not arrive in time
for current versions of these languages, architectures come and
go [102, 103] and query languages can be revised, but theorems
are forever [108]. We believe that important principles to keep in
mind when designing future (graph) query languages are (1) sym-
metry, (2) compatibility with automata, (3) set semantics, and (4)
compositionality.

Finally, let us mention that, in our experience, input from the
database theory community continues to be appreciated in query
language design e#orts. Some of us were involved in the standard-
ization of SQL/PGQ and GQL since the beginning and, while not
having full control, could steer the design towards more sustainable
choices on several occasions. More recently, we were all involved
in the design of Rel [8], a new language that aims at bridging the
gap between query languages and programming in the large, and
supports both relational and graph querying. The design of Rel
takes wisdom from the database theory community seriously —
notably, it uses set semantics — and we are excited to see how it
will evolve in the future.
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Graph uery Languages
Observation

For the query language,  
the underlying DB architecture  

(graph, relational,…)  
is irrelevant

SQL/PGQ

Cypher / GQL  implemented in⇝ graph native

 implemented in⇝ relational

can be  
translated 
into Rel

 implemented in⇝ relational
+ set semantics!

 implemented in⇝ graph native

 implemented in⇝ relational
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Wrapping Up
New graph query languages add
(a) handling of nodes and edges 
(b) path and list variables 
(c) path modes 
(d) data filters 
to Conjunctive Regular Path ueries

eir design in the standard(s) isn’t smooth yet
 we have work to do⇝

How would we design features like this  
in a graph query language?

Our proposal:  
- l-CRPQs  
- dl-CRPQs 

(see paper)

What can you do?
- Study these new CRPQs 
- Come up with your own design? 
- Study GQL  &  SQL/PGQ  
- Do RPQs in Datalog 
- Prove that sets are better than bags 
- Prove that bags are better than sets 
- Solve Automatic Programming 
- …



ank you!
Happy to talk to you in the break!


