
Querying Graph Data: Where We Are and Where To Go
Leonid Libkin

RelationalAI and IRIF

University of Edinburgh

Paris/Edinburgh, France/UK

l@libk.in

Wim Martens

University of Bayreuth

Bayreuth, Germany

wim.martens@uni-bayreuth.de

Filip Murlak

University of Warsaw

Warsaw, Poland

f.murlak@uw.edu.pl

Liat Peterfreund

Hebrew University of Jerusalem

Jerusalem, Israel

liat.peterfreund@mail.huji.ac.il

Domagoj Vrgoč

Pontificia Universidad Católica de Chile

Santiago, Chile

vrdomagoj@uc.cl

Abstract
Although graph query languages such as Cypher, SQL/PGQ, and

GQL take inspiration from theoretical languages such as conjunc-

tive regular path queries (CRPQs), their pattern matching facilities

are significantly more powerful in order to cope with real world

use cases. Four such extensions are treatment of both nodes and

edges, variables that bind to paths or lists, path modes, and data

filters.

In this paper, we define CRPQs with data tests and list variables
(dl-CRPQs), which extend CRPQs with these features and give the

reader a quick idea of how these features relate to the classical

literature on graph pattern matching. Then, we discuss where the

design of SQL/PGQ and GQL stands today and identify a host of op-

portunities in research and query language design. In particular, we

believe that a closer connection between graph query languages and

automata theory will open up opportunities for query optimization

that will benefit graph query languages in the long term.

CCS Concepts
• Information systems→Query languages;Graph-based data-
base models; • Theory of computation→ Formal languages and

automata theory.

Keywords
Graph databases, query languages, query language design, regular

path queries, paths, automata

ACM Reference Format:
Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, and Domagoj

Vrgoč. 2025. Querying Graph Data: Where We Are and Where To Go. In

Companion of the 44th Symposium on Principles of Database Systems (PODS
Companion ’25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY,

USA, 18 pages. https://doi.org/10.1145/3722234.3725822

This work is licensed under a Creative Commons Attribution 4.0 International License.

PODS Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1565-5/2025/06

https://doi.org/10.1145/3722234.3725822

1 Introduction
“The path is the goal.”

— Ancient wisdom1

Graph query languages have evolved significantly in the last decade.

Languages such as Cypher [52, 91], SQL/PGQ [35, 67], and GQL [35,

68] are strongly inspired by conjunctive regular path queries [29],

STRUQL [43], GXPath [78], and regular queries [97], and have at

the same time taken this academic work significantly further in

order to address industrial needs. The pattern matching facilities

in these languages extend the classical conjunctive regular path

queries (CRPQs) with four main features:

(a) handling both nodes and edges,

(b) path and list variables,

(c) path modes, and

(d) data filters.

The treatment of both nodes and edges is necessary in order to deal

with real-world use cases. Since, in graph-structured data, entities

are typically modeled as nodes and relationships as edges, a full-

fledged query language should be able to query both types of data.

Path variables enable returning arbitrary-length paths that match

regular path queries, while list variables (called group variables in

SQL/PGQ and GQL) allow returning lists of nodes or edges on these

paths. These are necessary to let the user inspect the connections

that regular path queries find in the data. Path modes (simple, trail,
shortest, etc.) were introduced to ensure that the number of paths

that matches a regular path query is always finite. Finally, data

filters are used for selecting paths based on the data values along

them. They play a role similar to the WHERE condition in SQL queries.
The design process of Cypher, GQL, and SQL/PGQ has taken aca-

demic input into account [5, 6] and has truly taken graph query lan-

guages to the next level. Furthermore, these languages are reviving

the research interest in query language aspects that were introduced

almost 40 years ago [29, 31], leading to new work on combining

data and graph topology [78], path modes [13, 83, 85, 87], path vari-

ables [41, 84], and formal semantics of query languages [50–52, 56].

On the other hand, seamlessly incorporating all features (a–d) in

an industry-level standard is a huge project, for which the current

versions of these languages do not mark the end of the road.

1
It has been attributed to Confucius, Gautama Buddha, Ghandi, and Wim’s wife, who

regularly reminded him that, when you have small kids, you should focus on the

journey.

9

https://orcid.org/0000-0002-6698-2735
https://orcid.org/0000-0001-9480-3522
https://orcid.org/0000-0003-0989-3717
https://orcid.org/0000-0002-4788-0944
https://orcid.org/0000-0001-5854-2652
https://doi.org/10.1145/3722234.3725822
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722234.3725822

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

So, how do we study what these languages can and cannot do

and, perhaps more importantly, how do we study what they should

evolve into? For this, we have two kinds of tools at our disposal. A

first kind of tool is abstractions of Cypher, SQL/PGQ, and GQL [50–

52, 56]. We refer to such abstractions as being distilled from practice.
They model the intricacies of these languages fairly precisely, are

not always easy to grasp, but are an excellent tool to identify and

study potential points of improvement of the original languages.

However, being fairly true to the original languages, they necessar-

ily suffer from similar design deficiencies and are not suitable for

subjecting the features (a)–(d) to a principled study.

For a principled study of (a)–(d), we need different models that

would, ideally, be compatible with the models we have been study-

ing for decades (RPQs, CRPQs, etc.). We call such abstractions grown
from theory. In this spirit, we introduce conjunctive regular path
queries with data tests and list variables (dl-CRPQs), which we be-

lieve capture the essence of CRPQs that are extended with features

(a)–(d). Ideally, dl-CRPQs can even serve as an inspiration for future

graph query languages, since they solve some issues of Cypher,

SQL/PGQ, and GQL. Important design principles for dl-CRPQs are:

(1) compatibility with automata,

(2) set semantics, and

(3) symmetry in the treatment of nodes and edges.

It is an interesting question if sticking to these principles could

improve the design of real-world graph query languages.We believe

so and present a few reasons in the paper.

Some Design Challenges
Queries in SQL/PGQ and GQL, as in Cypher, are built using an intu-

itive syntax often referred to as “ASCII art”. It uses round brackets

to denote nodes and square brackets with arrows to denote edges.

For example, (x) denotes a node which is bound to the variable 𝑥 ,

while -[z:a]-> denotes an 𝑎-labeled edge which is bound to the

variable 𝑧. Such expressions can then be combined freely to define

larger patterns. In general, SQL/PGQ and GQL allow treating query

patterns as if they were letters in a regular expression (with some

syntactic restrictions), thus achieving some degree of syntactic com-

positionality. Nonetheless, it is not as seamless as compositionality

of regular expressions, as we see next. We discuss a few example

queries in SQL/PGQ and GQL that highlight some behavior that

we believe warrants revisiting certain aspects of their standards.

Example 1. Consider the GQL pattern

(x) (()-[z:a]->()){2} (y)

It uses variables 𝑥 and 𝑦 for nodes and 𝑧 for edges. Each occurrence

of () stands for an anonymous variable. The curly brackets {2}
denote a two-fold iteration. Round brackets are also used for de-

limiting subexpressions, i.e., to indicate the scope of the iteration

operator. The whole pattern matches an 𝑎-labeled path of length

two from some node 𝑥 to some node 𝑦. Furthermore, to the variable

𝑧 it associates a list consisting of the two 𝑎-labeled edges. The use of

lists is convenient because they can be processed later in the query

for further filtering, or returned to the user. The pattern, however,

is not equivalent to any of the following patterns:

(x) (()-[z:a]->()) (()-[z:a]->()) (y)

(x) (()-[z:a]->()-[z:a]->()) (y)

(x) (()-[z:a]->()) (()-[z1:a]->()) (y)

This is because of the treatment of variables. In each pattern, mul-

tiple occurrences of the same variable are interpreted as a join.

Therefore in the first two patterns, both occurrences of 𝑧 match the

same edge, so they are not equivalent to the original one. (In fact,

both will only match a self-loop, because consecutive node vari-

ables, such as (u)(v) or ()(), must match the same node, making

the first two patterns equivalent.) The third pattern does match a

path of length two from 𝑥 to 𝑦, but instead of associating a list of

two elements to 𝑧 it generates separate bindings for 𝑧 and 𝑧1. ◀

Example 1 shows a disconnect between SQL/PGQ and GQL pat-

terns and regular expressions, where 𝑎2 is equivalent to 𝑎𝑎. We

believe that the underlying reason for this disconnect is that vari-

ables are used for two rather different purposes: indicating joins

and collecting lists of graph elements. The next example shows that

these two roles are deeply intertwined.

Example 2. Consider the GQL pattern

((x)-[:a]->(x)-[:a]->())*

The expression uses both occurrences of variable 𝑥 in two different

roles: as a variable to join on and as a variable that produces a list.

In order to understand these different roles, it helps to think about

the parse tree of the expression. When we see the leaf (x), it is

a node variable, which means that it binds 𝑥 to a node. Multiple

occurences of the same node variable in a subexpression that does

not have iteration are joined, which means that the subexpression

(x)-[:a]->(x) matches nodes 𝑥 that have an 𝑎-labeled self-loop.

However, if in the parse tree we go up through an iteration (i.e.,

repetitions of the form {a}, {a,b}, Kleene star, or Kleene plus), all
the variables in the subexpression become group variables. Group
variables do not perform joins, but collect in a list all graph elements

that are bound to them. Overall, the entire pattern binds 𝑥 to a list
of nodes that are connected with 𝑎-labeled edges, and in which

each node has an 𝑎-labeled self-loop. ◀

The example shows that two aspects are closely interleaved:

joins (node variables) and creating lists (group variables). From an

automata perspective, these two things are very different. Here,

creating lists would correspond to annotating positions and joins

to registers. Concerning annotating positions, the community de-

veloped a framework with favorable computational complexity

properties in the context of document spanners [38, 40, 98]. Reg-
isters, however, are a feature that drastically changes the power

and the computational complexity of basic automata tasks. An

automata-aware language design would provide more separation

between the roles of node and group variables.

Automata-based approaches are your friend when dealing with

regular expression matching tasks. For example, huge numbers

of matching paths can be stored efficiently [84] by an automata-

theoretic variant of database factorization [14, 72, 92]. Furthermore,

GQL patterns (without the internal variables we have here) can be

evaluated efficiently by traversing the graph and an automaton for

the expression in parallel [22, 41]. It is known that such methods

lead to algorithms with optimality guarantees [25, 71], as well as

unlocking a host of query optimization methods [23, 36, 45].

10

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

RPQs

(3.1.1)

CRPQs

(3.1.2)
Regular

queries

(3.1.3)

l-CRPQs

(3.1.4–3.1.5)

dl-CRPQs

(3.2.1–3.2.2)
GQL

SQL/PGQ

[67, 68]

GPC

[50, 51]

Core

GQL

(4.1)

Here there

be monsters

(uncharted)

edge-labeled graphs

property graphs

growing from theory distilling from practice

Figure 1: Overview of languages discussed in the paper (the numbers refer to sections or citations)

One of our main goals is to demonstrate that the issues in Exam-

ple 1 and 2 are solvable: Section 3.1.5 presents a model of RPQs with

list variables that is compatible with the aforementioned automata

techniques. In Section 3.2.2, this model is extended with joins on

node and edge variables, path modes, and data filters. As a final

example, we illustrate the importance of symmetry.

Example 3. Consider the GQL pattern

(x) ((u)-[:a]->(v) WHERE u.date < v.date)* (y)

This pattern matches 𝑎-labeled paths from 𝑥 to 𝑦 in which the

value of the date property of nodes on the path is increasing. It is

much less obvious how to match paths in which the value of the

date property on edges is increasing. A naïve approach

(x) (()-[u:a]->()-[v:a]->() WHERE u.date < v.date)* (y)

does not work: it will match a four-edge path in which the values of

date are 03-01-2025, 04-01-2025, 01-01-2025, 02-01-2025, in this pre-

cise order. In fact the only way offered by the language at this point

is to match all paths and then eliminate those (using EXCEPT [68])

in which some two consecutive values of the date property are not
increasing. We revisit this example in more detail in Section 5.2. ◀

Example 3 shows how asymmetric treatment of nodes and edges

leads to cases in which a natural condition (increasing dates) can

be easily expressed for nodes but not for edges. The asymmetry is

that paths in SQL/PGQ and GQL need to start and end with nodes

(not with edges), and that neighboring node variables in patterns

lead to joins (as in Example 1), but neighboring edge variables do

not. In Example 21 we show how a more symmetric treatment of

nodes and edges makes increasing values in edges easy to express.

A Zoo of Graph Query Languages
This paper will deal with several languages, coming from different

perspectives. We present an overview in Figure 1. Roughly, we see

a division into languages that are rooted in theory (with a strive for

mathematical clarity and elegance) and languages that are rooted

in practice (standards that strive for addressing industrial concerns,

and languages that strive for understanding the standards).

The overview just contains languages that we will touch upon

in the paper and is far from complete. It does not mention, e.g., two-

way navigation [23, 24], scoping rules for path and list variables [50],

post-processing of lists and paths [57], due to our focus on specific

aspects in modern standards. We refer to Barceló [12] for a more

complete overview up to 2013.

The Great ‘Relations vs Graphs’ Debate
Relational databases have been the foundation of database technol-

ogy since its very beginning. Historically, we have seen a multitude

of alternative database architectures come around [102] and around

[103] but, historically, these other architectures have either dis-

appeared or been absorbed by relational systems. So what about

graphs?

Here, it is important to distinguish between graph query lan-

guages and graph database implementations. We focus on graph

query languages and ask questions such as: what kind of features

do the users need to express their graph queries easily? This is inde-

pendent from whether the queried graphs are being implemented

in a graph-native or relational database. Graph-native systems may

come and go, but graph query languages are here to stay.

2 Graph Data Models
The main graph database models today can roughly be divided into

two abstractions: edge-labeled graphs and property graphs.

Edge-Labeled Graphs. These are the abstraction of graph databases
that have been studied since the 1980s [31, 89] and have received

a lot of attention in our field due to their elegance and simplicity

[9, 10, 12, 81, 94, 114]. Usually, their edges are sets of triples (𝑢, 𝑎, 𝑣),
where 𝑢 and 𝑣 are nodes and 𝑎 is a label. Such a definition is very

close to the Resource Description Framework (RDF) format [30],

which is rooted in the Semantic Web community. While this model

is simple and flexible, an important drawback is its inability to

address edges directly: edges do not have identifiers. Indeed, this

is a common issue in RDF that led to several extension proposals

such as RDF* [63, 64] or multi-layered graphs [7, 66, 75, 110]. We

therefore define edge-labeled graphs slightly more generally, bring-

ing them closer to the property graph model (Definition 6). In the

following we assume disjoint countably infinite sets Nodes of node
identifiers, Edges of edge identifiers, and Labels of edge labels.

Definition 4. An edge-labeled graph𝐺 is a tuple (𝑁, 𝐸, src, tgt, 𝜆),
where

• 𝑁 ⊆ Nodes is a finite set of nodes,
• 𝐸 ⊆ Edges is a finite set of edges,
• src : 𝐸 → 𝑉 is a total function,

• tgt : 𝐸 → 𝑉 is a total function, and

• 𝜆 : 𝐸 → Labels is a total function assigning labels to edges.

11

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

a1 a2

a3 a4

a5 a6

Account

Mike

no yes

Megan

Rebecca

t1

t2 t3

t4

t5

t6

t7
t8 t9

t10

Transfer

Transfer Transfer

Transfer

Transfer

Transfer

Transfer
Transfer Transfer

Transfer

r1

r2

r3

r4

r5

r6

r7

r8

r9 r10

owner

isBlocked

type

type

owner

owner

type

isBlocked

isBlocked isBlocked

· · ·
· · ·

· · ·

Figure 2: An edge-labeled graph with bank accounts (a1–a6) and transfers (t1–t10) between them.

owner: Megan

isBlocked: no

owner: Dave

isBlocked: no

owner: Mike

isBlocked: no

owner: Scott

isBlocked: yes

owner: Rebecca

isBlocked: no

owner: Jay

isBlocked: no

Account Account

Account Account

Account Account

a1 a2

a3 a4

a5 a6

date: 1/1/2020

amount: 8M

date: 2/1/2020

amount: 10M
date: 3/1/2020

amount: 10M

date: 9/1/2020

amount: 9M

date: 4/1/2020

amount: 5M

date: 3/1/2020

amount: 8M

date: 8/1/2020

amount: 6M

date: 6/1/2020

amount: 10M
date: 4/1/2020

amount: 10M

date: 7/1/2020

amount: 4M

Transfer Transfer
Transfer

Transfer

Transfer

Transfer

Transfer Transfer
Transfer

Transfer

t1 t2
t3

t4
t5

t6

t7 t8
t9

t10

Figure 3: A property graph with information on bank accounts and money transfers.

Intuitively, src(𝑒) = 𝑛1 and tgt(𝑒) = 𝑛2 means that 𝑒 is a directed

edge going from 𝑛1 to 𝑛2, while 𝜆(𝑒) = 𝑎 means that 𝑒 is labeled

with 𝑎. In contrast to a set of triples of the form (𝑛1, 𝑎, 𝑛2), this
model can have different edges 𝑒1, 𝑒2 going from 𝑛1 to 𝑛2 having

the label 𝑎.

Example 5. Figure 2 partially shows an example of an edge-

labeled graph. (It does not convey the same information as the prop-

erty graph in Figure 3; some nodes and edges are omitted to avoid

cluttering). Its nodes are {a1, . . . , a6, Account, Megan, Mike, Rebecca,
no, . . . } and its edges are {t1, . . . , t10, r1, . . . } (nodes are solid, edges
are dashed). Furthermore, we have 𝜆(t1) = Transfer, 𝜆(r1) = owner,

etc. Notice that edges t2 and t5 are both from a3 to a2 and both

have the label Transfer.

Labeled Property Graphs. This is the model deployed in many

enterprise systems [91, 93, 105, 106, 109] and it extends edge-labeled

graphs by adding attributes (properties) with their associated values

to both nodes and edges, as well as allowing to put labels on nodes.

For this, in addition to Nodes, Edges, and Labels, we now assume a

countably infinite set Properties of node and edge property names

and Values of property values. Compared to relational databases,

property names and values correspond to attribute names and

values.

Definition 6. A labeled property graph (LPG) is a tuple 𝐺 =

(𝑁, 𝐸, src, tgt, 𝜆, 𝜌), where
• 𝑁 ⊆ Nodes is a finite set of nodes,
• 𝐸 ⊆ Edges is a finite set of edges,
• src : 𝐸 → 𝑉 is a total function,

• tgt : 𝐸 → 𝑉 is a total function,

• 𝜆 : (𝑁 ∪ 𝐸) → Labels is a total function assigning a label to

an edge or a node, and

• 𝜌 : (𝑁 ∪ 𝐸) × Properties → Values is a partial function.

Here 𝜌 (𝑥, prop) = 𝑣 means that the node or edge 𝑥 has the

property prop whose value is 𝑣 . Given that 𝜌 is a partial function

not every node and edge has to have a value for each property, nor

do they have to have the same properties with defined values. In

the remainder of the paper, we will usually omit “labeled” when

referring to labeled property graphs.

Notice that, if (𝑁, 𝐸, src, tgt, 𝜆, 𝜌) is a property graph, then (𝑁, 𝐸,

src, tgt, 𝜆 |𝐸) is an edge-labeled graph. Here, we denote by 𝜆 |𝐸 the

restriction of 𝜆 to the domain 𝐸.

12

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

Remark 7. Definition 6 allows a single label per node or edge. In
some practical languages, multiple labels are allowed. This omission
makes no difference in terms of the results presented in this paper.

Example 8. Figure 3 depicts a property graph with nodes {a1, . . . ,
a6} and edges {t1, . . . , t10}. Similar to Figure 3, nodes are solid and

edges are dashed. Concerning labels, we have 𝜆(a1) = Account,

𝜆(t1) = Transfer, etc. Concerning properties and values, we have

𝜌 (a1, owner) = Megan, etc.

Paths and Lists. A path in a graph is an alternating sequence of

nodes and edges such that consecutive elements are incident. We

consider four types of paths, depending on whether they begin with

a node or and edge; or end with a node or an edge: node-to-node
paths, node-to-edge paths, etc. We write paths as

𝑝 = path(𝑜1, . . . , 𝑜𝑛)
where the 𝑜𝑖 with 𝑖 ∈ [𝑛] can be nodes or edges. GQL and SQL/PGQ
use the term elements for nodes or edges. We use the term objects
and denote them with 𝑜, 𝑜𝑖 , . . . to avoid notation clashes with edges,

which we denote with 𝑒 , 𝑒𝑖 , We write path() for the empty

path. For a non-empty path 𝑝 , by src(𝑝) we mean 𝑜1 if 𝑜1 is a node,

and src(𝑜1) if 𝑜1 is an edge. Similarly tgt(𝑝) is 𝑜𝑛 if 𝑜𝑛 is a node

and tgt(𝑜𝑛) if it is an edge. We call 𝑝 a path from src(𝑝) to tgt(𝑝).
We write len(𝑝) for the length of 𝑝 , which we define as its number

of edges; that is, len(𝑝) = |{𝑖 | 𝑜𝑖 is an edge}|. Notice that edges
that appear multiple times are also counted multiple times.

Let 𝐺 be an edge-labeled graph or a property graph with func-

tions src, tgt, and 𝜆. We say that 𝑝 is a path in 𝐺 if each edge in 𝑝

connects the nodes before and after it in the sequence; that is,

(a) for each 𝑖 ∈ {1, . . . , 𝑛 − 1} such that 𝑜𝑖 is an edge, we have that

tgt(𝑜𝑖) = 𝑜𝑖+1 and
(b) for each 𝑖 ∈ {2, . . . , 𝑛} such that 𝑜𝑖 is an edge, we have that

src(𝑜𝑖) = 𝑜𝑖−1.

We denote the set of paths in 𝐺 by Paths(𝐺).

Remark 9. While practical languages [35, 52, 112] use two-way
paths with forward and backward edges, we focus on one-way paths.
This is just for the sake of technical simplicity: our framework can
easily be extended with two-way paths.

To handle the fact that our paths can begin or end in either

a node or an edge, we define path concatenation as follows. For

𝑝 = path(𝑜1, . . . , 𝑜𝑛) and 𝑝′ = path(𝑜′
1
, . . . , 𝑜′𝑚) we define 𝑝 · 𝑝′ to

be the path

• path(𝑜1, . . . , 𝑜𝑛, 𝑜′
1
, . . . , 𝑜′𝑚) if 𝑜𝑛 ∈ 𝐸 and tgt(𝑜𝑛) = 𝑜′

1
;

• path(𝑜1, . . . , 𝑜𝑛, 𝑜′
1
, . . . , 𝑜′𝑚) if 𝑜′

1
∈ 𝐸 and src(𝑜′

1
) = 𝑜𝑛 ; and

• path(𝑜1, . . . , 𝑜𝑛, 𝑜′
2
, . . . , 𝑜′𝑚) if 𝑜𝑛 = 𝑜′

1
.

Furthermore, we define 𝑝 · path() = 𝑝 = path() · 𝑝 . Notice that
path(𝑜) · path(𝑜) = path(𝑜), independent of whether 𝑜 is a node

or an edge. This is different from the GQL standard in which this

equality holds for nodes but not for edges, but it helps to arrive at

more elegant definitions for (conjunctive) regular path queries with

data value comparisons and list variables (Sections 3.2.1–3.2.2).

Example 10. Consider path(a1, t1, a3, t2), which is a valid path

in the property graph of Figure 3. This is an example of a node-

to-edge path, since it starts with a node and ends with an edge.

Similarly, path(t1, a3, t2) is a valid edge-to-edge path. However,

expressions such as path(a1, t1, t1) do not define a valid path since

they repeat an edge without interleaving it with a node.

Given that we have to take care of different start/end objects,

the concatenation is also more involved. For example, the path

path(a1, t1, a3, t2, a2) in the graph of Figure 3 can be expressed as

a concatenation of two paths in several different ways, including:

path(a1, t1, a3) · path(a3, t2, a2)
path(a1, t1) · path(a3, t2, a2)

path(a1, t1) · path(t1, a3, t2, a2)
· · ·

Notice that the third concatenation above shows that the length of

the path obtained by concatenating two paths is not necessarily the

sum of the length of concatenated paths. This happens since the

repeated edge gets collapsed into a single edge as in the example

above. Our design decision is to prioritize symmetric treatment of

nodes and edges over requiring the length of a concatenated path to

be the sum of the length of the parts, which will lead to much more

symmetry between treatment of nodes and edges in Section 3.2.1

compared to Cypher, SQL/PGQ, and GQL (and, in particular, in

Example 21).

For this reason, if we want to obtain a path that traverses a

self-loop twice by concatenating two paths that only consist of the

edge, we need to consider the incident node. Indeed, if we assumed

that there is a self-loop t0 over the node a1, then we have that

path(t0) · path(t0) = path(t0), whereas path(t0) · path(a1, t0) =
path(t0, a1, t0), which is the path that traverses the edge t0 twice.

We define the edge label of 𝑝 , denoted elab(𝑝), inductively as

elab(𝑜) =
{
𝜆(𝑜) if 𝑜 is an edge

𝜀 if 𝑜 is a node.

Furthermore, elab(𝑝1 · 𝑝2) = elab(𝑝1) · elab(𝑝2).
Some of the graph query languages in Section 3.1 use lists. We

write lists as list(𝑜1, . . . , 𝑜𝑛), where 𝑜1, . . . , 𝑜𝑛 is the sequence of

elements in the list. We write list() for the empty list. The concate-

nation of two lists list(𝑜1, . . . , 𝑜𝑛) and list(𝑜′
1
, . . . , 𝑜′𝑚), written as

list(𝑜1, . . . , 𝑜𝑛) · list(𝑜′
1
, . . . , 𝑜′𝑚) is list(𝑜1, . . . , 𝑜𝑛, 𝑜′

1
, . . . , 𝑜′𝑚).

Variables and their Bindings. To define our query languages, we

assume that we have a countably infinite set Var of variables that
we use for nodes, edges, or even lists of nodes and/or edges; and

DataVar of data variables, which we assume to be disjoint from Var.
We will also use bindings, which are partial mappings from Var to
lists of edges, and nodes. The image of a binding depends on the

query languages that we define.

3 Query Languages Rooted in Theory
We present a simple formal model of today’s graph query languages

in several steps, starting from the ubiquitous regular path queries.
We aim at a model that is theoretically elegant, at the cost of not

being completely faithful to the intricate details of Cypher, GQL,

or SQL/PGQ, much like what first-order logic is to SQL. For more

faithful abstractions of Cypher, GQL, and SQL/PGQ, see [50–52].

13

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

3.1 Querying Edge-Labeled Graphs
We start with the (conjunctive) regular path queries that are rooted

in the work of Cruz et al. from 1987 [31]. In Sections 3.1.4–3.1.5, we

extend these with list variables that can bind to elements of paths.

They abstract the group variables in Cypher, GQL, and SQL/PGQ.

3.1.1 Regular PathQueries. A regular path query (RPQ) is a regular
expression 𝑅 over Labels. The regular expressions we consider are
inductively defined as the smallest set that contains 𝜀 (empty base

case), every element of Labels (label base case) and, if 𝑅1 and 𝑅2
are regular expressions, then so are their concatenation (𝑅1 · 𝑅2),
disjunction (𝑅1 + 𝑅2), and the Kleene star 𝑅∗

1
. The language 𝐿(𝑅) of

a regular expression 𝑅 is defined as usual and we use the usual rules

for omitting brackets and concatenation symbols. For convenience,

we use 𝑅? to abbreviate 𝑅 + 𝜀 and 𝑅+ to abbreviate 𝑅 · 𝑅∗.

Remark 11 (Wildcards). Real-world graph database query lan-
guages typically have wildcards that allow a single position of an RPQ
to match an infinite subset of Labels. Cypher, GQL, and SQL/PGQ
use anonymous variables, denoted () for nodes and [] for edges. We
will sometimes use wildcards later in the paper in the same way as
they are used in SPARQL. Here, we allow regular expression base ex-
pressions of the form !𝑆 , where 𝑆 ⊆ Labels is finite. Their semantics is
𝐿(!𝑆) = {𝑎 ∈ Labels | 𝑎 ∉ 𝑆}. Our reason for using this kind of wild-
cards is that they allow translations to finite automata and standard
automata constructions such as union, intersection, determinization,
and complement. Extending later definitions in the paper with such
wildcards is routine. We sometimes use the notation “_” for (𝑎+!{𝑎}),
which matches every 𝑎 ∈ Labels.

Let 𝐺 = (𝑁, 𝐸, src, tgt, 𝜆) be an edge-labeled graph. We denote

the result of 𝑅 on 𝐺 as ⟦𝑅⟧𝐺 and define it as

⟦𝑅⟧𝐺 =
{
(𝑢, 𝑣) ∈ 𝑁 × 𝑁 | there is a path 𝑝 from 𝑢 to 𝑣

in 𝐺 with elab(𝑝) ∈ 𝐿(𝑅)
}
.

Example 12. Consider the RPQ 𝑅 = Transfer∗. On the graph

in Figure 2, it returns the complete set of pairs {a1, . . . , a6} ×
{a1, . . . , a6}, since all these nodes are strongly connected with

Transfer-edges.

3.1.2 Conjunctive Regular PathQueries. A conjunctive regular path
query (CRPQ) is an expression of the form

𝑞(𝑥1, . . . , 𝑥𝑘) :− 𝑅1 (𝑦1, 𝑦′1), . . . , 𝑅𝑛 (𝑦𝑛, 𝑦
′
𝑛)

where

(1) 𝑅𝑖 is a regular path query for each 𝑖 ∈ [𝑛],
(2) {𝑥1, . . . , 𝑥𝑘 , 𝑦1, 𝑦′1, . . . , 𝑦𝑛, 𝑦

′
𝑛} ⊆ Var, and

(3) {𝑥1, . . . , 𝑥𝑘 } ⊆ {𝑦1, 𝑦′
1
, . . . , 𝑦𝑛, 𝑦

′
𝑛}.

We sometimes write the entire query as 𝑞 for simplicity. To de-

fine its semantics on an edge-labeled graph 𝐺 = (𝑁, 𝐸, src, tgt, 𝜆),
we say that a node homomorphism from 𝑞 to 𝐺 is a mapping ℎ :

{𝑦1, 𝑦′
1
, . . . , 𝑦𝑛, 𝑦

′
𝑛} → 𝑁 such that (ℎ(𝑦𝑖), ℎ(𝑦′𝑖)) ∈ ⟦𝑅𝑖⟧𝐺 for ev-

ery 𝑖 ∈ [𝑛]. The output of 𝑞 on 𝐺 is then defined as

𝑞(𝐺) = {ℎ(𝑥1, . . . , 𝑥𝑘) | ℎ is a node homomorphism from 𝑞 to 𝐺} .

Here, we write the tuple (ℎ(𝑥1), . . . , ℎ(𝑥𝑘)) as ℎ(𝑥1, . . . , 𝑥𝑘).

Example 13. The CRPQ

𝑞1 (𝑥1, 𝑥2, 𝑥3) :− Transfer(𝑥1, 𝑥2), Transfer(𝑥1, 𝑥3), Transfer(𝑥2, 𝑥3)
returns {(a3, a2, a4), (a6, a3, a5)} on the graph in Figure 2. The CRPQ

𝑞2 (𝑥, 𝑥1, 𝑥2) :− owner(𝑦, 𝑥1), isBlocked(𝑦, 𝑥2),
(Transfer · Transfer? · Transfer?) (𝑥,𝑦)

matches accounts 𝑥 and 𝑦 such that there is a path of transfers from

𝑥 to 𝑦 of length 1 to 3. It then returns triples consisting of account

𝑥 , the owner of 𝑦, and whether the account 𝑦 is blocked. One such

example in Figure 2 is (a4, Rebecca, no). Indeed, there is a path of

transfers of length 2 from a4 to a5.

3.1.3 Nesting queries: a side trip. Given that a binary query returns

pairs of nodes, conceptually we can think of such a query as defining

virtual edges. A compositional query language should then have full

access to these virtual edges which are defined by queries from the

language. Owing to the closure properties of regular expressions,

RPQs are compositional in this sense, but CRPQs are not. Indeed,

in CRPQs it is not possible to take transitive (Kleene) closures of

results of CRPQs. We illustrate this in the next example.

Example 14. Consider a simple CRPQ

𝑞1 (𝑥,𝑦) :− Transfer(𝑥,𝑦), Transfer(𝑦, 𝑥) ,
which finds pairs of nodes connected by Transfer-labeled edges in

both directions. If we think of 𝑞1 as defining (virtual) edges, it is

then not possible to construct a CRPQ that would select pairs of

nodes connected by a path of such edges.

This kind of compositionality can be achieved by nesting queries,

an idea already present in [29] and further developed in [21] and [97].

In essence, the idea is to allow using binary CRPQs in place of edge

labels in RPQs. The following example illustrates this.

Example 15. Pairs of nodes connected by a path of virtual edges

defined by 𝑞1 from Example 14 can be selected using a nested CRPQ:

𝑞2 (𝑢, 𝑣) :−
(
(Transfer(𝑥,𝑦), Transfer(𝑦, 𝑥)) [𝑥,𝑦]

)∗ (𝑢, 𝑣) .
We call such queries nested CRPQs. Reutter et al. [97] introduced

an elegant Datalog-like syntax for nested CRPQs and coined the

term regular queries. GQL and SQL/PGQ follow this idea closely

and allow applying Kleene star to every pattern. While in this paper

we focus on “flat” CRPQs, nesting is a powerful feature of real-life

graph query languages that deserves more attention.

3.1.4 RPQs with List Variables. An RPQ with list variables (l-RPQ)
is a regular expression 𝑅 over Labels ∪ {𝑎𝑧 | 𝑎 ∈ Labels, 𝑧 ∈ Var},
where we assume the union to be disjoint. Intuitively, the elements

of Labels work the same as before, and elements of the form 𝑎𝑧

match an edge with label 𝑎 and add their ID to a list associated to

the variable 𝑧 ∈ Var. In order to avoid confusion, we use letters 𝑥 , 𝑦

for “CRPQ variables” and 𝑧 for list variables. By Var(𝑅) we denote
the set of variables occurring in 𝑅.

We formalize their semantics using path bindings, which are

pairs (𝑝, 𝜇) where 𝑝 is a path and 𝜇 is a binding that maps variables

in Var to lists of edges that appear in 𝑝 . We assume the bindings 𝜇 to

be total on Var, but only map to non-empty lists for a finite number

of variables. This facilitates the definition of their concatenation:

for two bindings 𝜇1 and 𝜇2, we denote by 𝜇1 · 𝜇2 the binding that

14

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

concatenates all lists. That is, for every 𝑧 ∈ Var, we define (𝜇1 ·
𝜇2) (𝑧) = 𝜇1 (𝑧) · 𝜇2 (𝑧). By 𝜇0 we denote the binding such that

𝜇0 (𝑧) = list() for every 𝑧 ∈ Var. By 𝜇𝑧 ↦→𝑒 we denote the binding 𝜇

such that 𝜇 (𝑧) = list(𝑒) and 𝜇 (𝑧′) = list() for every 𝑧′ ≠ 𝑧. For an

edge-labeled graph 𝐺 = (𝑁, 𝐸, src, tgt, 𝜆), we define:
⟦𝜀⟧𝐺 := {(path(𝑢), 𝜇0) | 𝑢 ∈ 𝑁 }
⟦𝑎⟧𝐺 := {(path(𝑢, 𝑒, 𝑣), 𝜇0) | 𝑒 ∈ 𝐸, src(𝑒)=𝑢, tgt(𝑒)=𝑣, 𝜆(𝑒)=𝑎}
⟦𝑎𝑧⟧𝐺 := {(path(𝑢, 𝑒, 𝑣), 𝜇𝑧 ↦→𝑒) |𝑒 ∈𝐸, src(𝑒)=𝑢, tgt(𝑒)=𝑣, 𝜆(𝑒)=𝑎}
⟦𝑅1 + 𝑅2⟧𝐺 := ⟦𝑅1⟧𝐺 ∪ ⟦𝑅2⟧𝐺
⟦𝑅1 · 𝑅2⟧𝐺 := {(𝑝1 ·𝑝2, 𝜇1 ·𝜇2) | (𝑝1, 𝜇1) ∈⟦𝑅1⟧𝐺 , (𝑝2, 𝜇2) ∈⟦𝑅2⟧𝐺 }
⟦𝑅⟧0𝐺 := {(path(𝑢), 𝜇0) | 𝑢 ∈ 𝑁 }
⟦𝑅⟧𝑘𝐺 := {(𝑝1 · . . . ·𝑝𝑘 , 𝜇1 · . . . ·𝜇𝑘) | (𝑝𝑖 , 𝜇𝑖) ∈ ⟦𝑅⟧𝐺 for all 𝑖 ∈ [𝑘]}
⟦𝑅∗⟧𝐺 :=

⋃∞
𝑘=0

⟦𝑅⟧𝑘𝐺
Example 16. The l-RPQ

𝑅 = (Transfer𝑧)∗ · isBlocked
matches paths consisting of arbitrarily many Transfer-edges and

ending with an isBlocked-edge. Furthermore, it stores the list of

Transfer-edges in variable 𝑧. On the graph 𝐺 in Figure 2, it returns

the infinite set ⟦𝑅⟧𝐺 = {(path(a4, r10, yes), 𝜇1), (path(a2, t3, a4,
r10, yes), 𝜇2), (path(a3, t2, a2, t3, a4, r10, yes), 𝜇3), path(a3, t5, a2, t3,
a4, r10, yes), 𝜇4), . . . , path(a3, r9, no), 𝜇5), . . .}, where

𝜇1 (𝑧) = list() 𝜇2 (𝑧) = list(t3) 𝜇3 (𝑧) = list(t2, t3)
𝜇4 (𝑧) = list(t5, t3) 𝜇5 (𝑧) = list()

Notice that, since we use edge identity in edge-labeled graphs

(Definition 4), we can now differentiate between returning the

“parallel edges” t2 or t5.

The example illustrated that ⟦𝑅⟧𝐺 can be infinite, just as for

regular expressions. For database queries, however, we typically

want to have finite outputs. For this reason, GQL and SQL/PGQ

have the ability to restrict paths to shortest, simple, or trails, which

always ensures a finite output. For technical reasons, we introduce

these restrictions when we move to conjunctions of RPQs with list

variables (Section 3.1.5). We believe that RPQs with list variables

are interesting to study even in the case where ⟦𝑅⟧𝐺 is infinite. For

instance, one can study enumeration of all results that match paths

of a given length (see e.g., [87]).

Furthermore, l-RPQs are designed to allow a translation into

finite automata using routine methods (similar to those used in the

research on document spanners [2, 38, 40, 98]). Such a design has

important advantages:

(1) it allows to leverage factorization for storing sets of paths —

even if these sets are infinite [41, 84] (see Section 6); and

(2) it avoids semantic issues caused by the (overly?) syntax-driven

design of GQL group variables.

Concerning (2), list variables indeed do not have the semantic issues

highlighted in Example 1 in the introduction, because they satisfy

⟦𝑅⟧2𝐺 = ⟦𝑅 · 𝑅⟧𝐺 by definition. On the other hand, they only collect
graph elements in lists and do not support joins. We believe that

joins should happen at the level of CRPQs, which we discuss next.

3.1.5 CRPQs with List Variables. A CRPQ with list variables is an
expression of the form

𝑞(𝑥1, . . . , 𝑥𝑘) :−𝑚1 𝑅1 (𝑦1, 𝑦′1), . . . , 𝑚𝑛 𝑅𝑛 (𝑦𝑛, 𝑦′𝑛)

where

(1) 𝑚𝑖 ∈ {shortest, simple, trail, all};
(2) 𝑅𝑖 is an RPQ with list variables for each 𝑖 ∈ [𝑛];
(3) Var(𝑅𝑖) ∩ {𝑦1, 𝑦′

1
, . . . , 𝑦𝑛, 𝑦

′
𝑛} = ∅ for every 𝑖 ∈ [𝑛];

(4) Var(𝑅𝑖) ∩ Var(𝑅 𝑗) = ∅ for every 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ [𝑛]; and
(5) {𝑥1, . . . , 𝑥𝑘 } ⊆ {𝑦𝑖 , 𝑦′

1
, . . . , 𝑦𝑛, 𝑦

′
𝑛} ∪

⋃𝑛
𝑖=1 Var(𝑅𝑖).

Recall that the sets Var(𝑅𝑖) contain list variables that we denote

with 𝑧, 𝑧𝑖 , etc.

To define the semantics on edge-labeled graphs, we first intro-

duce some notation. For a set 𝑃 of path bindings over 𝐺 and nodes

𝑢, 𝑣 of 𝐺 , we let 𝜎𝑢,𝑣 (𝑃) = {(𝑝, 𝜇) ∈ 𝑃 | 𝑝 is a path from 𝑢 to 𝑣}.
Furthermore, we define

• shortest(𝑃) = {(𝑝, 𝜇) ∈ 𝑃 | len(𝑝) is minimal in 𝑃},
• simple(𝑃) = {(𝑝, 𝜇) ∈ 𝑃 | 𝑝 is a simple path},
• trail(𝑃) = {(𝑝, 𝜇) ∈ 𝑃 | 𝑝 is a trail},
• all(𝑃) = 𝑃 .

An unrestricted path homomorphism from 𝑞 to 𝐺 is a mapping ℎ :

Var(𝑞) → 𝑁 ∪ list(𝐺) such that

• ℎ |{𝑦1,𝑦′
1
,...,𝑦𝑛,𝑦

′
𝑛 } is a node homomorphism from 𝑞 to 𝐺 , and

• for each 𝑖 ∈ [𝑛] and 𝑧 ∈ Var(𝑅𝑖), we have ℎ(𝑧) = 𝜇 (𝑧), for
some

(𝑝, 𝜇) ∈ 𝜎ℎ (𝑦𝑖),ℎ (𝑦′
𝑖
)
(
⟦𝑅𝑖⟧𝐺

)
.

A (restricted) path homomorphism takes the𝑚𝑖 into account. It is

defined analogously, but

• for each 𝑖 ∈ [𝑛] and 𝑧 ∈ Var(𝑅𝑖), we have ℎ(𝑧) = 𝜇 (𝑧), for
some

(𝑝, 𝜇) ∈𝑚𝑖

(
𝜎ℎ (𝑦𝑖),ℎ (𝑦′

𝑖
)
(
⟦𝑅𝑖⟧𝐺

))
.

The output of 𝑞 on 𝐺 is then defined as

𝑞(𝐺) = {ℎ(𝑥1, . . . , 𝑥𝑘) | ℎ is a path homomorphism from 𝑞 to 𝐺} .

Example 17 (Grouping by Endpoint Pairs). The l-CRPQ

𝑞(𝑥1, 𝑥2, 𝑧) :−
owner(𝑦1, 𝑥1), owner(𝑦2, 𝑥2), shortest (Transfer𝑧)+ (𝑥1, 𝑥2)

returns the owners 𝑥1 and 𝑥2 of accounts 𝑦1 and 𝑦2, respectively,

together with the lists of edges in shortest paths of transfers from

𝑥1 to 𝑥2 that have nonzero length. (To simplify notation, we omit

the modifiers all.) If we assume for the sake of consistency with

Figure 3 that a6 has an outgoing owner-edge to Jay, then it returns

𝑥1 ↦→ Jay 𝑥1 ↦→ Mike

𝑥2 ↦→ Rebecca 𝑥2 ↦→ Megan

𝑧 ↦→ list(t10) 𝑧 ↦→ list(t7, t4)
etc. Notice that 𝑞 returns shortest paths grouped by endpoint pair
of the l-RPQ (Transfer𝑧)+. Indeed, for the (infinitely many) paths

from a6 (Jay) to a5 (Rebecca), the restricted path homomorphism

applies end-node selection before shortest, which is why it selects

the path of length one. For the paths from a3 (Mike) to a1 (Megan),

following the same principle, it selects the path of length two. This

is the desired behavior of the shortest mode in GQL.

Remark 18. List variables could be added to nested CRPQs (Sec-
tion 3.1.3) or regular queries in a similar way, but the semantics of
shortest, simple, and trail would have to be reconsidered, because
atoms of such queries do not match paths, but more complex structures.

15

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

3.2 Querying Property Graphs
We now equip the languages described in Sections 3.1.4 and 3.1.5

with features to query property graphs: most notably, the capability

to query data values. The languages presented here find their roots

in query languages for data graphs [78], where each node carries a

data value from Values. Data graphs were motivated by data trees,
which were studied in the context of XML and tree-structured data

during the decade prior to its appearance [17–20]. Compared to

query languages for data graphs, we incorporate the following

features to bring the formalism closer to GQL: (1) list variables

and (2) the capability to distinguish between nodes and edges. Our

languages will deal with nodes and edges in a symmetric way,

although this is not the case in SQL/PGQ and GQL.

3.2.1 RPQs with Data Tests and List Variables. Consider the fol-
lowing grammar of element tests (denoted ETest for short), defining
operators which allow testing and storing property values:

ETest :- 𝑥 := pname | pname 𝑜𝑝 𝑐 | pname 𝑜𝑝 𝑥

Here, 𝑜𝑝 ∈ {=,≠, <, >}, pname ∈ Properties, 𝑐 ∈ Values, and 𝑥 ∈
DataVar is a variable used to bind values from Values.

A regular expression with data tests and list variables is an expres-

sion of the form 𝑅(𝑥,𝑦), where 𝑅 is a regular expression over

{(𝑎) | 𝑎 ∈ Labels} ∪ {[𝑎] | 𝑎 ∈ Labels} ∪
∪ {(𝑎𝑧) | 𝑧 ∈ Var, 𝑎 ∈ Labels} ∪ {[𝑎𝑧] | 𝑧 ∈ Var, 𝑎 ∈ Labels} ∪

∪ {(et) | et ∈ ETest} ∪ {[et] | et ∈ ETest}
Intuitively, we use (·) to match nodes and [·] to match edges. An

RPQ with data tests and list variables, or dl-RPQ for short, is an

expression of the form 𝑅(𝑥,𝑦), where 𝑅 is a regular expression with

data tests and list variables.

Semantics. To define the semantics, we will use value assign-
ments, which are partial functions 𝜈 : Var → Values. By 𝜈 [𝑥 ↦→ 𝑐]
we denote the mapping that is identical to 𝜈 , except that it maps

𝑥 to 𝑐 . For a property graph 𝐺 = (𝑁, 𝐸, src, tgt, 𝜆, 𝜌), we define the
relation

(𝑝, 𝜈, 𝜇) ⊢𝑅 (𝑝′, 𝜈′, 𝜇′)
by induction on the structure of the dl-RPQ 𝑅. Here, 𝑝 and 𝑝′ are
paths, 𝜈 and 𝜈 ′ are partial mappings from Var to Values, and 𝜇 and

𝜇′ are bindings that map to lists of graph elements. Recall that

we defined 𝜇1 · 𝜇2 and 𝜇𝑧 ↦→𝑜 in Section 3.1.4. We then require the

following, depending on the structure of 𝑅:

(𝑎) : 𝑝′ = 𝑝 ·path(𝑜), 𝑜 ∈ 𝑁, 𝜆(𝑜) = 𝑎, and (𝜈 ′, 𝜇′) = (𝜈, 𝜇)
(𝑎𝑧) : 𝑝′ = 𝑝 ·path(𝑜), 𝑜 ∈ 𝑁, 𝜆(𝑜) = 𝑎, 𝜈′ = 𝜈, and 𝜇′ = 𝜇 ·𝜇𝑧 ↦→𝑜

(et) : 𝑝′ = 𝑝·path(𝑜), 𝑜 ∈ 𝑁 and, depending on the structure of et,
− (𝑥 := pname) : 𝜈 ′ = 𝜈 [𝑥 ↦→ 𝜌 (𝑛, pname)],
− (pname op c) : 𝜌 (𝑜, pname) op c holds,
− (pname op 𝑥) : 𝜌 (𝑜, pname) op 𝜈 (𝑥) holds;

𝑅1 · 𝑅2 : there is a (𝑝1, 𝜈1, 𝜇1) such that

(𝑝, 𝜈, 𝜇) ⊢𝑅1
(𝑝1, 𝜈1, 𝜇1) and (𝑝1, 𝜈1, 𝜇1) ⊢𝑅2

(𝑝′, 𝜈′, 𝜇′)
𝑅1 + 𝑅2 : (𝑝, 𝜈, 𝜇) ⊢𝑅1

(𝑝′, 𝜈′, 𝜇′) or (𝑝, 𝜈, 𝜇) ⊢𝑅2
(𝑝′, 𝜈′, 𝜇′)

𝑅∗ : (𝑝, 𝜈, 𝜇) = (𝑝′, 𝜈′, 𝜇′) or there are (𝑝1, 𝜈1, 𝜇1), . . . , (𝑝𝑛, 𝜈𝑛, 𝜇𝑛)
such that (𝑝, 𝜈, 𝜇) ⊢𝑅 (𝑝1, 𝜈1, 𝜇1), (𝑝𝑛, 𝜈𝑛, 𝜇𝑛) ⊢𝑅 (𝑝′, 𝜈′, 𝜇′),
and (𝑝𝑖 , 𝜈𝑖 , 𝜇𝑖) ⊢𝑅 (𝑝𝑖+1, 𝜈𝑖+1, 𝜇𝑖+1) for every 𝑖 ∈ [𝑛 − 1].

The base cases [𝑎], [𝑎𝑧], and [et] are analogous, but have the con-
dition 𝑜 ∈ 𝐸 instead of 𝑜 ∈ 𝑁 .

Finally, for a dl-RPQ 𝑟 , we define

⟦𝑅⟧𝐺 = {(𝑝, 𝜇) | (path(), 𝜈0, 𝜇0) ⊢𝑟 (𝑝, 𝜈, 𝜇)} ,
where 𝜈0 is the empty assignment and 𝜇0 maps every variable to

the empty list (as in Section 3.1.4).

We rely crucially on our definition of path concatenation, which

ensures that 𝑝 · path(𝑜) = 𝑝 if the last object of 𝑝 is 𝑜 . and thus

facilitates matching multiple atomic expressions to the same object.

For example, similar to GQL patterns, (𝑎𝑧) (date < 𝑥) (𝑥 := date)
will be matched to a single node: first it tests if the current node is

labeled 𝑎 and adds it to the list variable 𝑧; then it tests if the value

of its date property is smaller than the one stored in 𝑥 ; and then it

overwrites 𝑥 with this value. Different from GQL, we treat nodes

and edges symmetrically here, and [𝑎𝑧] [date < 𝑥] [𝑥 := date] will
also be matched to a single edge.

Remark 19. Note that we do not include value assignments in the
output of dl-RPQs: ⟦𝑅⟧𝐺 is defined as a set of pairs of the form (𝑝, 𝜇).
This means that we use value assignments only for filtering paths
(much like the WHERE clause in SQL), and not for returning values.

Remark 20. Notice that dl-RPQs can express boolean combinations
of ETests. Indeed, conjunction is concatenation in regular expressions.
Disjunction is disjunction in regular expressions. Negation can be
pushed to atoms and then we use that 𝑜𝑝 has {=,≠, <, >}.

Example 21. The following expression selects paths that are

labeled 𝑎∗ and have increasing values of the date property in nodes

(recall from Remark 11 that we use “_” to denote a label wildcard):

(𝑎𝑧) (𝑥 := date)
(
[_] (𝑎𝑧) (date > 𝑥) (𝑥 := date)

)∗
The following expression does the analogous thing for edges:

[𝑎𝑧] [𝑥 := date]
(
(_) [𝑎𝑧] [date > 𝑥] [𝑥 := date]

)∗
The latter expression returns edge-to-edge paths. If we would like

to have node-to-node paths, we can write

(_) [𝑎𝑧] [𝑥 := date]
(
(_) [𝑎𝑧] [date > 𝑥] [𝑥 := date]

)∗
(_)

3.2.2 CRPQs with Data Tests and List Variables. A CRPQ with data
tests and list variables, or dl-CRPQ for short, is an expression of the

form

𝑞(𝑥1, ..., 𝑥𝑘) :−𝑚1 𝑅1 (𝑦1, 𝑦′1) , . . . , 𝑚𝑛 𝑅𝑛 (𝑦𝑛, 𝑦′𝑛)
that satisfies conditions (1–5) for CRPQs with list variables (Sec-

tion 3.1.5), except that𝑅𝑖 (𝑦𝑖 , 𝑦′𝑖) can now be dl-RPQs in condition (2).

The semantics of dl-CRPQs is verbatim the same as the semantics

of CRPQs with list variables in Section 3.1.5.

4 Query Languages: From Practice to Theory
In Section 3, we were building graph languages bottom-up, starting

with the basic RPQs and then adding features such as list variables,

joins, and data tests (the growing from theory part of Figure 1).

We now contrast this with a top-down approach, where we start

with a real language and try to distill it into a clean theoretical

calculus that captures its essential features. Specifically, we start

with GQL, whose standard is 500 pages of dense dry text written in

a very specific language mandated by ISO [68], hard to understand

16

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

⟦(𝑥)⟧𝐺 := {(path(𝑛), {𝑥 ↦→ 𝑛}) | 𝑛 ∈ 𝑁 }�
𝑥→
�
𝐺

:= {(path(𝑛1, 𝑒, 𝑛2), {𝑥 ↦→ 𝑒}) | 𝑒 ∈ 𝐸, src(𝑒) = 𝑛1, tgt(𝑒) = 𝑛2}

⟦𝜋1 𝜋2⟧𝐺 :=
{
(𝑝1 · 𝑝2, 𝜇1 Z 𝜇2) | (𝑝1, 𝜇1) ∈ ⟦𝜋1⟧𝐺 , (𝑝2, 𝜇2) ∈ ⟦𝜋2⟧𝐺 , 𝜇1 ∼ 𝜇2, and tgt(𝑝1) = src(𝑝2)

}
⟦𝜋1 + 𝜋2⟧𝐺 := ⟦𝜋1⟧𝐺 ∪ ⟦𝜋2⟧𝐺 only defined if FV (𝜋1) = FV (𝜋2)

⟦𝜋⟧0𝐺 := {(path(𝑛), 𝜇∅) | 𝑛 ∈ 𝑁 }
⟦𝜋⟧𝑗

𝐺
:=

{
(𝑝1 · · · 𝑝 𝑗 , 𝜇∅) | ∃𝜇1, . . . , 𝜇 𝑗 : (𝑝1, 𝜇1), . . . , (𝑝 𝑗 , 𝜇 𝑗) ∈ ⟦𝜋⟧𝐺 and tgt(𝑝1) = src(𝑝2), . . . , tgt(𝑝 𝑗−1) = src(𝑝 𝑗)

}�
𝜋𝑖 ..𝑚

�
𝐺

:=
⋃𝑚

𝑗=𝑖 ⟦𝜋⟧
𝑗

𝐺

⟦𝜋 ⟨𝜃⟩⟧𝐺 :=
{
(𝑝, 𝜇) ∈ ⟦𝜋⟧𝐺 | 𝜇 |= 𝜃

}
𝜇 |= 𝑥 .𝑘 = 𝑦.𝑘′ ⇔ 𝜌 (𝜇 (𝑥), 𝑘) = 𝜌 (𝜇 (𝑦), 𝑘′)
𝜇 |= 𝑥 .𝑘 < 𝑦.𝑘′ ⇔ 𝜌 (𝜇 (𝑥), 𝑘) < 𝜌 (𝜇 (𝑦), 𝑘′)

𝜇 |= ℓ (𝑥) ⇔ 𝜆(𝜇 (𝑥)) = ℓ

𝜇 |= 𝜃 ∨ 𝜃 ′ ⇔ 𝜇 |= 𝜃 or 𝜇 |= 𝜃 ′

𝜇 |= 𝜃 ∧ 𝜃 ′ ⇔ 𝜇 |= 𝜃 and 𝜇 |= 𝜃 ′

𝜇 |= ¬𝜃 ⇔ 𝜇 ̸ |= 𝜃

Figure 4: Semantics of patterns ⟦𝜋⟧𝐺 and conditions 𝜇 |= 𝜃 with respect to a property graph 𝐺 = (𝑁, 𝐸, src, tgt, 𝜆, 𝜌)

for an untrained reader. The first attempt to produce a mathematical

model of its pattern sublanguage (a 100-page part of the standard)

was made in [50]. This model, called GPC (Graph Pattern Calculus),

retained many key features of the standard; among them was a

separation of variables into different kinds, leading to a complex

type system that formed an integral part of GPC. A second attempt

included not only pattern matching but all read-only operations of

GQL, particularly operations that manipulate tables obtained by

pattern matching [51].

Papers [50, 51] provided descriptions of (large parts of) GQL

that can easily be grasped by academic researchers. Nevertheless,

these abstractions are still complex to use a basic model for ana-

lyzing the expressive power of the languages. By an analogy with

SQL, to understand its expressive power one needs to start with

a simple abstraction like the relational calculus or algebra. In the

spirit of searching for such a starting point for analyzing GQL,

we now present a calculus from [56] that captures an “essential

part” of GQL: a simple pattern calculus (without extras such as

nulls or non-atomic values), and relational algebra as the language

for manipulating pattern outputs. One important aspect that was

treated [50, 51] and Section 3 but is not modeled here, however, is

list variables.

4.1 CoreGQL
The language CoreGQL we present as an abstraction of GQL con-

sists of three key components:

(1) a language for defining patterns;

(2) a way to turn patterns into relations; and

(3) a relational query language over such relations.

The easiest part of abstracting GQL into CoreGQL is (3): we just

take relational algebra as such a language. As for (2), this is achieved

by choosing a set of free variables of patterns, which in turn are

designed in such a way that every relation we get from it is a first-

normal-form relation (that is, it has no nulls, no duplicates, and

every entry is an atomic value [28] — so, no path or list variables).

We now look at all three components in more detail, starting with

the main component of the language: its patterns. As we already

announced in Remark 9, we omit backward edges, but they can

easily be added.

4.1.1 CoreGQL Patterns. CoreGQL patterns are given by

𝜋 := (𝑥) node

| 𝑥→ edge

| 𝜋1 𝜋2 concatenation

| 𝜋1 + 𝜋2 disjunction

| 𝜋𝑛..𝑚 repetition

| 𝜋 ⟨𝜃⟩ condition

where variables 𝑥 are optional, and 𝑛 . . .𝑚 with 0 ≤ 𝑛 ≤ 𝑚 ≤ ∞
indicates that a pattern is repeated between 𝑛 and 𝑚 times. Of

course the Kleene star is simply 𝜋0..∞, so we shall write 𝜋∗ for such
patterns. Conditions are given by the grammar

𝜃, 𝜃 ′ := 𝑥 .𝑘 = 𝑥 ′ .𝑘′ | 𝑥 .𝑘 < 𝑥 ′ .𝑘′ | ℓ (𝑥) | 𝜃 ∨ 𝜃 ′ | 𝜃 ∧ 𝜃 ′ | ¬𝜃
where 𝑥, 𝑥 ′ ∈ Var, 𝑘, 𝑘′ ∈ Keys, and ℓ ∈ Labels.

Semantically, on a property graph, a pattern generates a set of

pairs that consist of

• a path;

• a mapping of free variables to graph elements, i.e., nodes

and edges.

To define this, we need the notion of free variables of patterns
satisfying our key requirement that patterns generate first-normal-

form relations, having no nulls and no non-atomic values. With

this in mind, we define free variables as:

• FV
(
(𝑥)

)
= FV

(
𝑥→
)
:= {𝑥};

• FV (𝜋1 𝜋2) := FV (𝜋1) ∪ FV (𝜋2)
• FV (𝜋1 + 𝜋2) := FV (𝜋1)2

2
We assume that in a pattern 𝜋1 + 𝜋2 it holds that FV (𝜋1) = FV (𝜋2) .

17

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

• FV (𝜋𝑛..𝑚) := ∅
• FV (𝜋 ⟨𝜃⟩) := FV (𝜋)

Note that the penultimate rule ensures that there are no non-atomic

values: a variable free in a pattern disappears from the list of free

variables if the pattern gets repeated, ensuring that collections of

bindings, viewed as relations, have only atomic values. The third

rule ensures that there are no nulls.

Bindings are partial mappings from variables to graph elements,

i.e., nodes and edges. Two bindings 𝜇1, 𝜇2 are compatible, written
as 𝜇1 ∼ 𝜇2, if they agree on their shared variables, i.e., if both

𝜇1 and 𝜇2 are defined on 𝑥 then 𝜇1 (𝑥) = 𝜇2 (𝑥). In this case, we

define 𝜇1 Z 𝜇2 by (𝜇1 Z 𝜇2) (𝑥) := 𝜇1 (𝑥) if 𝜇1 is defined on 𝑥 , and

(𝜇1 Z 𝜇2) (𝑥) := 𝜇2 (𝑥), otherwise. We let 𝜇∅ be the unique mapping

with the empty domain. With this, the semantics of patterns and

conditions is defined in Figure 4.

Before explaining how patterns produce relations, note one con-

sequence of the semantics in Figure 4: every produced path is a

node-to-node to path. Indeed, this is due to the way the semantics

of base cases and composition is defined, and is consistent with the

current state of languages such as Cypher and GQL.

4.1.2 Outputs of Patterns. Matching a pattern to a property graph

𝐺 = (𝑁, 𝐸, src, tgt, 𝜆, 𝜌) produces a relation. To specify this relation,
let Ω be a sequence whose elements are variables 𝑥 or expressions

𝑥 .𝑘 where 𝑥 is a variable and 𝑘 is a property. A mapping 𝜇 is com-
patible with Ω if for each 𝑥 ∈ Ω, 𝜇 is defined on 𝑥 , and for each

𝑥 .𝑘 ∈ Ω, 𝜇 is defined on 𝑥 and 𝜌 (𝜇 (𝑥), 𝑘) is defined. We then define

𝜇Ω : Ω → Nodes ∪ Edges ∪ Values as

𝜇Ω (𝜔) :=
{
𝜇 (𝑥) if 𝜔 = 𝑥 ,

𝜌 (𝜇 (𝑥), 𝑘) if 𝜔 = 𝑥 .𝑘 .

Notice that the image of 𝜇Ω consists of atomic values, namely graph

elements (nodes or edges) and property values.

With this, we define patterns with output as expressions of the
form 𝜋Ω whose semantics with respect to a property graph 𝐺 is

⟦𝜋Ω⟧𝐺 :=
{
𝜇Ω

�� 𝜇 is compatible with Ω and ∃𝑝 : (𝑝, 𝜇) ∈ ⟦𝜋⟧𝐺
}

and the semantics of 𝜋 is given in Figure 4. Since all mappings 𝜇Ω
have the same domain Ω, we can view ⟦𝜋Ω⟧𝐺 as a relation over

the set of attributes Ω.

4.1.3 CoreGQL: Relational Operations Over Pattern Outputs. To
define CoreGQL, we associate with each pattern 𝜋 and a sequence

Ω a relation symbol 𝑅𝜋Ω of arity |Ω |. The semantics of 𝑅𝜋Ω is ⟦𝜋Ω⟧𝐺 ,
i.e., a first-normal-form relation over the set of attributes Ω. Then
CoreGQL is defined as the set of relational algebra queries over all

relations 𝑅𝜋Ω .

As an example, consider a GQL query that returns nodes 𝑢 and

values of their property 𝑠 such that 𝑢 is connected to two different

nodes 𝑢1, 𝑢2 with the same value of property 𝑝 . For this, define

patterns 𝜋𝑖 := (𝑥)→(𝑥𝑖) and sequences Ω𝑖 = (𝑥, 𝑥 .𝑠, 𝑥𝑖 , 𝑥𝑖 .𝑝) for
𝑖 = 1, 2. Then the above query is

𝜋𝑥,𝑥 .𝑠

(
𝜎𝑥1≠𝑥2∧𝑥1 .𝑝=𝑥2 .𝑝

(
𝑅
𝜋1

Ω1

Z 𝑅
𝜋2

Ω2

))
.

Note that here we use 𝜋 both for (relational) projection and to

denote a pattern (in 𝜋1 and 𝜋2).

4.2 CoreGQL vs GQL
To compare CoreGQL with actual GQL, note that the treatment of

variables in the latter is more complicated. Specifically, a variable

can be classified as one of the following types:

• a variable that binds a single graph element;

• a variable that binds a single graph element or null;

• a variable that binds a list of graph elements;

• a variable that binds a list of graph elements or null.

Which one of those categories a variable falls into depends on

the context: it could be of one kind in a subpattern 𝜋 ′ of 𝜋 , but
of a different kind in 𝜋 itself. This is precisely the reason why in

GQL 𝜋2..2 is not the same as 𝜋𝜋 , as was already indicated in the

introduction.

Our languages fixes this in different ways. The languages from

Section 3.2 make it explicit when a variable is bound to a list,

whereas CoreGQL simply disallows returning list-bound variables.

This is done to avoid dealing with higher-order relations and to

prove results on the expressiveness of GQL which we will see in

the next section, but for now it means that the bottom-up and

top-down approaches to abstracting graph query languages have

not yet properly met in the middle to uncover and eliminate the

monsters from Figure 1.

With respect to nulls, CoreGQL omits them too, thus forcing

two sides of a disjunction 𝜋1 + 𝜋2 to have the same free variables.

In actual GQL, this need not be the case, and partial mappings are

allowed. For example, the pattern

(
(𝑥)+

𝑦
→

)
matches a node 𝑥 or an

edge 𝑦, producing bindings 𝜇 with domains {𝑥} or {𝑦}. Interpreting
𝜇 as a tuple with attributes 𝑥,𝑦 requires marking one entry as a

non-applicable null.

One significant difference between real GQL and all its theoreti-

cal reconstructions so far is that the former adopts bag semantics
while the latter opt for avoiding duplicates. The perils of bag seman-

tics in handling regular expressions being well known [9, 81], the

design of GQL avoided complexity issues associated with them. Nev-

ertheless, the interplay between deduplication and pattern match-

ing in GQL leads to some counter-intuitive results, such as query

results depending on whether a variable was given a name or not

[35, Section 6].

Finally, GQL is a full-fledged query language with features such

as aggregation, procedures, and updates, just to name a few; these

have not been picked up by theoretical research so far.

5 Query Language Design: Where We Are
Building mathematical models of query languages and analyzing

them is often the first step in producing recommendations for design

adjustments and future enhancements. For example, the inexpress-

ibility of recursive queries in extensions of first-order logic (FO)

with aggregate functions [76] was the key motivation for adding

recursive common table expressions to SQL, while the prohibitively

high complexity of regular path queries in SPARQL led to changes

in its standard [9, 81].

With graph languages, we are very early in this process: lan-

guages are new, and their formalizations are even newer, although

the basic theory of RPQs and similar queries is fairly well estab-

lished. Importantly, new languages such as SQL/PGQ and GQL are

18

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

in their first versions, and Cypher is not that old either; all of them

will be undergoing changes and enhancements in the coming years.

With this in mind, we can already offer an analysis of existing lan-

guage features, not only identifying problematic elements of their

design but also suggesting future corrections and improvements.

5.1 What is Missing?
Much of analysis of SQL expressiveness started with results on

its expressive power, initially for simple theoretical languages like

relational algebra and calculus. Now equipped with models of graph

query languages, we present several results in this vein.

AWarm-Up: RPQs in Cypher. Unlike GQL and SQL/PGQ, Cypher

puts limitations on patterns when it comes to repetitions: these can

only be applied to edge labels or their disjunctions. For example, an

RPQ ℓ∗ can be straightforwardly expressed, but it seems that (ℓℓ)∗
cannot be. The claim that Cypher falls short of the full power of

RPQs has been made several times [5, 33, 52, 107, 110]. It is however

not easy to prove results about a real-life language without having a
formal model of it (and in fact real-life Cypher gives one a backdoor

to writing all RPQs, even though it is not very natural and is loaded

with complexity issues, see Section 5.2).

To capture Cypher patterns for the purpose of this analysis,

we adapt the definition of the pattern language from Section 4 as

follows:

𝜋 := (𝑥 : 𝐿) | 𝑥 :𝐿−→ | :𝐿∗−→ | 𝜋1 𝜋2 | 𝜋1 + 𝜋2

where each 𝐿 is a disjunction of labels ℓ1 | ℓ2 | · · · | ℓ𝑛 . That is, arbi-
trary repetitions of patterns are disallowed, and only those applied

to disjunctions of labels are kept. Since we are only concerned with

RPQs and no data, we also removed conditions from the language,

specifying labeling explicitly in node and edge patterns (such labels

are assumed to include wildcard, making them effectively optional).

With this definition, it is not hard to prove the following.

Proposition 22 ([55]). The RPQ (ℓℓ)∗ is not expressible using
Cypher patterns.

Properties of Edges. For the next example of limitations of the

expressive power of graph languages, we start with the following

CoreGQL pattern:

𝜋inc = (𝑥)
(
((𝑢) → (𝑣))⟨𝑢.𝑘 < 𝑣 .𝑘⟩

)∗ (𝑦)
Free variables of 𝜋 are 𝑥 and 𝑦, and this pattern finds paths from 𝑥

to 𝑦 so that along them the value of property 𝑘 of nodes increases.

But what if we wanted to ask for paths where property values

of edges increase? A naive way of extending the previous query to

capture the “increasing property values in edges” query does not

work:

(𝑥)
(
(() 𝑢→ () 𝑣→ ())⟨𝑢.𝑘 < 𝑣 .𝑘⟩

)∗ (𝑦)
Indeed, this pattern will be matched on a four-edge path where

values of property 𝑘 of edges are 3, 4, 1, 2 (in this order). This is

because the subexpression (() 𝑢→ () 𝑣→ ())⟨𝑢.𝑘 < 𝑣 .𝑘⟩ moves

forward in “steps of two” and the edge matching 𝑣 in one iteration

does not merge with the edge matching 𝑢 in the next iteration, as

happens for nodes in the pattern 𝜋inc. The following shows that

the increasing property values in edges cannot be expressed, under

the assumption that the patterns do not use repeated variables.

Proposition 23 ([56]). Patterns without repeated variables cannot
express the “increasing property values in edges” query.

We shall soon see what real-life Cypher and GQL do in order to

amend this.

Reachability is Not Enough for NLOGSPACE. Already back in

the 1980s we had graph languages that captured all NLogSpace

queries [29]. Can CoreGQL do the same? Let us look at the following

three statements:

• CoreGQL can express the reachability query: (𝑥) →1..∞ (𝑦);
• Core GQL has at least the power of FO as it allows using rela-

tional algebra operators over the results of pattern matching;

• Reachability is complete for NLogSpace under first-order

reductions.

Can we conlude that all NLogSpace queries are expressible in

CoreGQL? No, we cannot.

Proposition 24 ([56]). There are DLogSpace queries that are not
expressible in CoreGQL.

How is this possible? The problem is that to model first-order

reductions, we need to test reachability in a structure obtained by

applying a first-order transformation. However, in GQL, the flow

of information is different: first patterns are evaluated (e.g., reach-

ability), and only then are first-order operations used on pattern

matching results. This flow of information in one direction only –

from patterns to first-order operations – makes the language fall

short of the full power of NLogSpace. What is missing is nest-

ing (see Section 3.1.3). In fact, nesting is precisely what allows the

language from [29] to capture NLogSpace.

5.2 Dangers of Ad-Hoc Solutions
Real-life languages are more expressive than their theoretical coun-

terparts; SQL, for example, is Turing-complete as Turing machines

can be simulated using recursion and aggregation. In response to

users’ demands for more expressiveness of graph languages, ven-

dors include a number of solutions in their products. Some of these

solutions, despite looking rather natural, lead to pitfalls. We discuss

three of them, aiming to put back some issues – perhaps perceived

as solved in industry – in the court of the language designer.

Matching onMatched Paths. There is a simple idea how to express

queries such as “value in edges increases”. For this, we must be

able to match a new pattern only on the path that already matched

some pattern. For this, we extend pattern matching with conditions

of the form ∀𝜋 ′ ⇒ 𝜃 . The meaning of 𝜋 ⟨∀𝜋 ′ ⇒ 𝜃⟩ is as follows.
If 𝑝 is a path that matches 𝜋 , then 𝜋 ′ is matched on 𝑝 only, and

every time it matches, the condition 𝜃 must be satisfied. Without

giving the formal semantics of it, we illustrate the increasing value

in edges query:(
(𝑥) →∗ (𝑦)

)
⟨ ∀

(𝑢→ () 𝑣→
)
⇒ 𝑢.𝑘 < 𝑣 .𝑘 ⟩

The match of

𝑢→ () 𝑣→ happens on a matched path from 𝑥 to

𝑦, and it is required that for every such match, i.e., for every two

consecutive edges, the values of property 𝑘 increase. While this

seems a reasonable solution, and is advocated currently by the GQL

committee [80, 116], there are unpleasant underwater currents.

19

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

Consider a slight variation(
(𝑥) →∗ (𝑦)

)
⟨∀

(
(𝑢)→∗ (𝑣)

)
⇒ 𝑢.𝑘 ≠ 𝑣 .𝑘 ⟩

This query looks for all paths from 𝑥 to 𝑦 on which all values of

property 𝑘 of nodes are different – and we know this query is

NP-hard in data complexity [78].

Example 21 in Section 3.2.1 shows how to find paths with in-

creasing values on edges using dl-RPQs. This, however, relies on

the symmetric treatment of nodes and edges in dl-RPQs, which

GQL currently does not have.

Turning to Complement for Help. A seemingly easy way to over-

come the inexpressibility result shown above is to notice that its

complement is expressible. Indeed, the complement of the condition
that values in edges along a path increase states that there are con-

secutive edges in which property values do not increase. Since this

latter condition is easily expressible in GQL, all that remains is to

find all paths between two nodes, and from those subtract the set

of paths that match the complement pattern.

Existing languages — Cypher, GQL, PGQ — all provide such

facilities. They allow to name paths and allow path variables in

outputs. That is, we can add patterns of the form 𝑝 = 𝜋 , where 𝑝

is a path variable. Such a variable can become part of the output,

resulting in a column in a relation whose entries are paths. So,

for example, (𝑝 = 𝜋)𝑝 would return paths that are bound to the

variable 𝑝 . In this extension of the language, if we want to find all

paths between nodes labeled ℓ1 and ℓ2 such that values in edges

increase, we could write 𝜋 ′𝑝 − 𝜋 ′′𝑝 where

𝜋 ′ := 𝑝 =
(
(: ℓ1) →∗ (: ℓ2)

)
𝜋 ′′ := 𝑝 =

(
(: ℓ1) →∗ () 𝑢→ () 𝑣→ () →∗ (: ℓ2)

)
⟨𝑢.𝑘 ≥ 𝑣 .𝑘⟩

(where the subscript 𝑝 indicates that the output has paths them-

selves) since the pattern 𝜋 ′′ expresses the negation of the condition

“all values in edges increase” by checking that there is a pair of

consecutive edges where the values do not increase.

So, while it is possible to express the “increasing values” prop-

erty for edges, we see that we need completely different language

ingredients than for expressing the same property for nodes. This

puts an unnecessary burden on the user. Moreover, if we assume

that the language is evaluated compositionally (first evaluate 𝜋 ′,
then 𝜋 ′′, and then compute the difference), this might lead to poor

performance, which is indeed observed in practice [56]. The un-

derlying source of these problems is the asymmetric treatment of

nodes and edges in the language design.

Turning to Lists for Help. We now turn to another way of over-

coming expressivity limitations offered by practical systems. In

Cypher, one can extract the list of nodes on a path bound to vari-

able 𝑝 using a function we write as N(𝑝). Similarly, one can extract

the list of edges using E(𝑝). Over these lists one can perform the

usual list operations. One of them is the reduce operation. It takes

as a parameter a value 𝜀, a unary function 𝜄, and a binary function

𝑓 . With that, reduce𝜀,𝜄,𝑓 (𝐿) returns 𝜀 when the list 𝐿 is empty, 𝜄 (𝑥)
when 𝐿 has a unique element 𝑥 , and 𝑓 (𝑥, reduce𝜀,𝜄,𝑓 (𝐿′)) when
the head of 𝐿 is 𝑥 and its tail is 𝐿′.

As shown in [57], many queries become expressible with the help

of list functions, including extensions of RPQs to different kinds

of automata and even relations on words. We can also express the

already discussed query that checks for paths with increasing values

in edges. For simplicity, let us assume that we want the values to

be non-negative. Let 𝜄 be the function that maps an edge 𝑒 to the

property value 𝑒.𝑘 , and let 𝑓 (𝑒, 𝑣) be 𝑒.𝑘 if 𝑒.𝑘 ≥ 𝑣 ≥ 0 and −1
otherwise. Then we can find paths with increasing, non-negative

values in edges using the following query

𝑝 =
(
(𝑥) →∗ (𝑦)

)
⟨reduce

0,𝜄,𝑓 (E(𝑝)) ≥ 0⟩ .
This sounds promising, but the addition of lists and operations

on them makes some infeasible queries deceptively easy to write.

Consider for example the innocuously looking query

𝑝 =
(
(𝑥) →∗ (𝑦)

)
⟨reduce0,𝜄,+ (E(𝑝)) = 0⟩

for the same 𝜄 as above. This query allows to encode the subset sum

problem on a graph that is a sequence of nodes with parallel edges

between each pair of consecutive nodes: one having the number,

the other having zero. Therefore, this query is NP-complete in data

complexity (even if matching paths 𝑝 are restricted to be shortest,

or simple, or trails). It can lead to evaluation issues even on tiny

graphs with a few dozen nodes [57].

Lists can also be used to aggregate along paths. For example, the

expression reduce0,𝜄,+ (E(𝑝)) seen earlier computes the sum of all

values of property 𝑘 of edges along path 𝑝 . Let us denote it by Σ𝑝
and consider the following

𝑝 =
(
(: ℓ) →+ (𝑥 : ℓ)

)
⟨𝑥 .𝑎 · (Σ𝑝)2 + 𝑥 .𝑏 · Σ𝑝 + 𝑥 .𝑐 = 0⟩

assuming that the matching mode is shortest. There are two ways

of providing a semantics to this query, depending on the point

at which the condition is applied. To illustrate this, consider a

very simple graph 𝐺 , consisting of a single node 𝑢 labeled ℓ with

properties 𝑎, 𝑏, 𝑐 , and a self-loop 𝑒 on 𝑢 with property 𝑘 set to 1.

• If the condition is applied after shortest, then a single short-

est path path(𝑢𝑒𝑢) is computed, and the condition simply

checks if 𝑢.𝑎 + 𝑢.𝑏 + 𝑢.𝑐 = 0.

• If shortest applies to paths that satisfy the condition, then a

path is returned iff the equation 𝑢.𝑎 · 𝑥2 + 𝑢.𝑏 · 𝑥 + 𝑢.𝑐 = 0

has a positive integer solution; in fact the length of the path

is precisely that solution.

The latter is uncomfortably close to solving Diophantine equations,

and indeed with a slightly more complex (but still fixed) polynomial

and a slightly bigger (but still bounded-size) graph, one can show

that query answering is undecidable [50, 57]. This further shows

that the list approach, while simple to use, comes loaded with

problems that may not be easily seen by programmers.

6 Query Language Evaluation: Where We Are
Evaluating graph queries with list variables, path modes, and data

filters efficiently is a challenging task that will require new tech-

niques. In fact, if one does not design the query language carefully,

evaluation can even become downright impossible.

6.1 Bag Semantics and Recursion: Boom!
Early versions of RPQs in SPARQL used bag semantics in combi-

nation with Kleene star [111], which easily result in prohibitively

many answers [9]. Indeed, evaluating the RPQ (((𝑎∗)∗)∗)∗ on a 6-

clique with 𝑎-edges gave more answers than the number of protons

20

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

in the observable universe. The lesson: if you put bag semantics
together with recursion, the size of your outputs will explode.

Where did this problem come from? Intuitively, the reason was

that SPARQL’s (multiset) union and join operators were re-used as

union and concatenation in RPQs. If we define Kleene star using

such multiset unions and joins, it means that the number of times

that a pair of endpoints (𝑥,𝑦) should be returned by an RPQ 𝑅

is the number of different ways that 𝑅 can be matched on paths

from 𝑥 to 𝑦. This is, for 𝑎-labeled paths and expressions of the form

(((𝑎∗)∗)∗)∗, indeed very many, even if we restrict to simple paths.

Today, RPQs in SPARQL (called property path expressions) still
have a strange (non-uniform) semantics: they use bag semantics for

the union and concatenation operators, but set semantics for the

Kleene star and Kleene plus operators [112]. In consequence, it is

not clear which intuitive meaning we can associate to the number

of times a pair of nodes is returned as an answer to an RPQ.

We believe that the underlying problem was twofold: bag seman-
tics in combination with overly syntax-driven design. In this paper,

we argue for a design of RPQs (and their incarnations with list vari-

ables and data tests) compatible with standard automata techniques

(as in Sections 3.1.1,3.1.4, and 3.2.1), which allows avoiding both.

For one thing, (((𝑎∗)∗)∗)∗ can be equivalently rewritten to 𝑎∗. As
we show next, automata techniques bring many other advantages.

6.2 Automata Techniques to the Rescue
From a principled point of view, the obvious approach to evaluating

RPQs is to use automata. It was used by Mendelzon and Wood [89]

and countless theory-oriented works afterwards (e.g., [25, 71, 78,

81, 87, 95]). Indeed, determining if a node pair (𝑢, 𝑣) in graph 𝐺 is

an answer to an RPQ 𝑅 is equivalent to testing if the NFA obtained

from 𝐺 by turning 𝑢 into an initial state and 𝑣 into an accepting

state has a non-empty intersection with an NFA for 𝑅. The product
construction, which is usually used for testing if the intersection is

non-empty, can also be used to find multiple answers at once or

constructed lazily if only one answer is required.

We assume familiarity with non-deterministic finite automata

(NFAs) and write them as (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where 𝑄 is the finite set

of states, Σ is the finite alphabet of edge labels, 𝛿 ⊆ 𝑄 × Σ × 𝑄

is the transition relation, 𝑞0 is the initial state, and 𝐹 is the set of

accepting states. We recall that, given an RPQ 𝑅, an equivalent NFA

𝑁𝑅 (without 𝜀-transitions) can be constructed efficiently [100].

More precisely, given an edge-labeled graph𝐺 = (𝑁, 𝐸, src, tgt, 𝜆)
and NFA 𝑁𝑅 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), the product graph𝐺× is then defined

as the edge-labeled graph 𝐺× = (𝑁×, 𝐸×, src×, tgt×, 𝜆×), where
• 𝑉× = 𝑉 ×𝑄 ;

• 𝐸× = {(𝑒, (𝑞1, 𝑎, 𝑞2)) ∈ 𝐸 × 𝛿 | 𝜆(𝑒) = 𝑎};
• src× (𝑒, (𝑞1, 𝑎, 𝑞2)) = (src(𝑒), 𝑞1)
• tgt× (𝑒, (𝑞1, 𝑎, 𝑞2)) = (tgt(𝑒), 𝑞2)
• 𝜆× ((𝑒, (𝑞1, 𝑎, 𝑞2))) = 𝜆(𝑒).

Each node of the form (𝑢, 𝑞) in 𝐺× corresponds to the node 𝑢 in 𝐺

and, furthermore, each path 𝑃 of the form (𝑣, 𝑞0), (𝑣1, 𝑞1), . . . , (𝑣𝑛,
𝑞𝑛) in 𝐺× corresponds to a path 𝑝 = 𝑣, 𝑣1, . . . , 𝑣𝑛 in 𝐺 that (a) has

the same length as 𝑝 and (b) brings the automaton from state 𝑞0 to

𝑞𝑛 . Consequently, when 𝑞𝑛 ∈ 𝐹 , this path in𝐺 matches 𝑅, meaning

that (𝑣, 𝑣𝑛) ∈ ⟦𝑅⟧𝐺 . In turn, this means that testing whether a pair

(𝑢, 𝑣) is an answer to an RPQ 𝑅 over 𝐺 boils down to solving a

reachability problem from (𝑢, 𝑞0) to any (𝑣, 𝑞) with 𝑞 ∈ 𝐹 . This

gives a polynomial time algorithm both for determining whether a

pair of nodes is a query answer, and for computing all such pairs.

As we will see, this automata-based method can be extended for

more expressive queries.

If we want to count the number of matching paths, it is important

that 𝑁𝑅 is unambiguous; that is, it has at most one accepting run per

word. If this is the case, then the number of matching paths from

𝑢 to 𝑣 in 𝐺 is the number of paths from (𝑢, 𝑞0) to any (𝑣, 𝑞) with
𝑞 ∈ 𝐹 . A recent study of more than 150 million RPQs in SPARQL

logs showed that, while ambiguous RPQs did occur, none of them

required an unambiguous (or even deterministic) automaton that

is larger than the regular expression [62].

The theme throughout this section will be to see where this

simple idea can be extended to handle the features of modern graph

query languages.

6.3 New Features Bring New Challenges
While we have a good understanding of how to evaluate RPQs

using automata techniques [12], or how well these solutions work

in practice [41, 110], the new features (a–d) from the introduction

raise a host of new challenges that are yet to be addressed by the

research community. While (a) —handling both nodes and edges—
is perhaps mostly a language design challenge, (b–d) raise some

significant challenges for query evaluation. We discuss these next.

Path and List Variables. Adding path and list variables to RPQs

can make their outputs infinite. For example, evaluating the l-RPQ

(𝑎𝑧)∗, which matches 𝑎-labeled paths and, for each such path col-

lects each edge in the list variable 𝑧, would result in an infinite set

of paths when evaluated over any graph with an 𝑎-labeled cycle.

While CRPQs with list variables (Section 3.1.5) solve the infinity

issue by allowing path restrictions (shortest, etc.), the number of

results can still be prohibitively large. For instance, consider the

following CRPQ with list variables which contains only one atom:
3

𝑞(𝑧) :− shortest 𝐴(s, t) ,
with 𝐴 = (𝑎𝑧)∗, and consider the graph in Figure 5. The output

of 𝑞 on such graphs of size 𝑛 consists of 2
Θ(𝑛)

lists, due to the 2
𝑛

different paths that are matched. In fact, a list variable can even

generate exponentially large output on every path that is matched

by the query. This is illustrated by the path

𝑢1 𝑢2 𝑢3 · · · 𝑢2𝑛+1
𝑒1 : 𝑎 𝑒2 : 𝑎 𝑒3 : 𝑎 𝑒2𝑛 : 𝑎

and the l-RPQ (𝑎𝑎𝑧 + 𝑎𝑧𝑎)∗. Indeed, the list variable 𝑧 will bind to

2
𝑛
different lists.

These prohibitively large query results reveal a major challenge

in query processing: not only final query results cannot be directly

presented to the user, but also intermediate query results cannot

be materialised for further processing. This shows the need for

(1) efficiently computable succinct representations of intermediate

query results and (2) efficient query evaluation over such succinct

representations further down the pipeline. Coming back to the

principles of query language design, we note that these issues

3
Here we generalize CRPQs by allowing atoms 𝑅 (𝑡1, 𝑡2) , where 𝑡1 and 𝑡2 are either
variables in Var, or nodes in the graph. The semantics is based on homomorphisms

that map each node to itself, while a variable can be mapped to any node.

21

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

s

𝑢1

𝑣1

𝑤2

𝑢2

𝑣2

𝑤3 · · · 𝑤𝑛

𝑢𝑛

𝑣𝑛

t

a

a

a

a

a

a

a

a

a

a

a

a

Figure 5: Graph with exponentially many paths from s to t.

already exist under set semantics. Under bag semantics, the outputs

of queries become even larger.

Path Modes. In contrast to RPQs, which can be efficiently evalu-

ated using the product construction (Section 6.2), deciding whether

there is a simple path or trail from 𝑢 to 𝑣 that matches an RPQ in

an edge-labeled graph 𝐺 is NP-complete [13, 49, 74, 83, 89]. This

means that many approaches for RPQ evaluation will not work

anymore when only these restricted paths should be considered.

Data Filters. Data filters (Section 3.2.1) can significantly compli-

cate query evaluation. For instance, they might require us to explore

a large number of paths to detect one that satisfies all conditions in

the query. To illustrate this, consider the property graph in Figure 3

and the query which asks for the shortest path of transfers from

Mike to Rebecca, but such that at least one transfer with an amount

less than 4.5M must be present. This query is easily expressible

as an RPQ with data tests and shows that we need to search be-

yond shortest paths: the direct path between Mike and Rebecca,
namely path(a3, t7, a5) is not a valid solution, but we need to use

path(a3, t6, a4, t9, a6, t10, a5). The shortest mode in combination

with data filters may even force using cycles: consider the short-

est paths of transfers from Mike to Rebecca that has at least two
transfers with an amount less than 4.5M. This example highlights

the issue even when simple tests against constants are used; using

the ability to store and later compare the values lead to even bigger

challenges (we refer the reader to [78] for details).

6.4 What We Know
Next, we highlight what is known about some of these problems

and where we see opportunities for future research.

Path Variables. Path variables were first studied in [15]. In gen-

eral, it makes sense to use output-sensitive complexity measures to

study (C)RPQ evaluation with path and list variables [34, 86], such

as the framework of enumeration algorithms [101]. Since paths can
grow arbitrarily long, and therefore constant-delay algorithms can-

not exist, output-linear delay algorithms have been studied [41, 84].

A fundamental step towards handling path and list variables

is to be able to represent compactly the potentially huge num-

ber of intermediate results. A promising approach seems to be

to represent (multi)sets of paths in path multiset representations
(PMRs) [84]. PMRs are closely related to the product graph, but are

more general — they do not necessarily involve an RPQ. Formally, a

PMR over an edge labeled graph 𝐺 = (𝑁𝐺 , 𝐸𝐺 , src, tgt, 𝜆) is a tuple
𝑅 = (𝑁, 𝐸, src, tgt, 𝛾, 𝑆,𝑇), where:

• (𝑁, 𝐸, src, tgt) is an (unlabeled) graph;

• 𝛾 : (𝑁 ∪𝐸) → (𝑁𝐺 ∪𝐸𝐺) is a total homomorphism, meaning

that it maps nodes in 𝑁 to nodes in 𝑁𝐺 , edges in 𝐸 to edges

in 𝐸𝐺 , and for each 𝑒 ∈ 𝐸 it holds that:

– src(𝛾 (𝑒)) = 𝛾 (src(𝑒)); and
– tgt(𝛾 (𝑒)) = 𝛾 (tgt(𝑒)).

• 𝑆,𝑇 ⊆ 𝑁 is a set of source and target nodes, respectively.

If 𝑅 is a PMR over 𝐺 , then each path 𝑝 = path(𝑛1, . . . , 𝑛𝑘) in 𝑅

corresponds to a path 𝛾 (𝑝) = path(𝛾 (𝑛1), . . . , 𝛾 (𝑛𝑘)) in 𝐺 . Corre-

spondingly, each PMR 𝑅 over 𝐺 represents the set of paths:

SPaths(𝑅) := {𝛾 (𝜌) | 𝜌 is a path from 𝑆 to 𝑇 in 𝑅}.

As their name suggests, PMRs support representing multisets

of paths (see [84]), but we firmly believe that set semantics is a

more natural fit for path queries, so we only consider this aspect

of PMRs here. To illustrate how PMRs work, consider the property

graph in Figure 3 and assume we wish to represent all (infinitely

many) cycles of transfers from Mike to Mike which never pass

through a blocked account. Effectively, these are the cycles defined

by looping through the edges t7, t4 and t1. A PMR representing

this information is depicted below, where 𝛾 (𝑜) is depicted inside of

each object 𝑜 , and with 𝑆 = 𝑇 = {r1}:

a1

a3

a5a1

a3

a5

r1

t1

t7

t4

t1

t7

t4

Here we have an example of a finite representation of an infinite

set of results, which is an interesting feature of PMRs. Similarly,

if we consider again the graph from Figure 5, with an exponential

number of paths we need to return. A PMR representing all these

2
𝑛
paths would essentially be the graph itself, with 𝑆 = {s} and

𝑇 = {t}, taking space𝑂 (𝑛). Once constructed, a PMR can be passed

to other operators processing a CRPQ with list variables without

the need to explicitly enumerate paths one by one. Interestingly,

the algorithms for returning paths in [41, 84] actually build a PMR

representing the (set of) output paths in their pre-processing phase

and use this PMR to enumerate the results efficiently. In this sense,

PMRs are closely related to factorized databases [92]. However,
PRMs represent results succinctly as finite state automata, whereas

factorized databases use context-free grammars [72].

List Variables. To the best of our knowledge, the only work di-

rectly dealingwith (C)RPQswith list variables [50, 51] only provides

the formal definition of their semantics in GQL and SQL/PGQ. Our

definition of l-CRPQs is designed to open up a connection to capture
variables in document spanners [40]. Intuitively, document spanners

are functions that extract mappings to substrings of a word. They

are often defined using regular expressions with capture variables

and their evaluation resembles how an RPQ with list variables op-

erates on a single path [38, 47, 98]. For document spanners, we also

need to handle the issue of exponentially many mappings over a

single document, for which compact data structures have been in-

troduced [2]. This allows efficient enumeration of output mappings

in the fashion of enumeration algorithms mentioned before.

Path Modes. Recent work focused on single RPQs that only have

path variables (or, equivalently, list variables that always match all

graph elements on the path) [34, 41, 84, 86]. This is closely related

to enumerating words in regular languages [1, 4] and there are

specialized data structures developed to represent a large number

of results [3, 90]. In its most systems-oriented incarnation [41],

22

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

this work leverages the product graph, but extends it so that paths

of a specific type (shortest, trail, etc.) can be returned. Although

determining whether a simple path or trail between two given

nodes exists is already NP-complete [13, 83, 89], practical results

show that this approach is actually feasible [41, 110] since queries

and graphs used in practice are usually well behaved [62, 82, 87].

Works such as [34, 41, 110] also show how to avoid completing

the entire pre-processing phase before staring to enumerate the

results, which makes them highly relevant for real-world systems

that implement a pipelined approach to query execution.

Data Filters. The idea of using variables to store values for data

tests in graph-structured data (Section 3.2.1) comes from [78, 79].

The evaluation complexity for these expressions (without list vari-

ables) was studied only as a decision problem that checks whether

a pair of nodes is connected by a path conforming to the RPQ with

data tests, showing the problem to be PSPACE-complete in com-

bined complexity and NLOGSPACE-complete in data complexity.

These results use a variation of register automata [69] that operate

on paths in a graph, and a modification of the product construction.

7 Where To Go: Road Map for Future Research
We conclude by outlining some directions for further study.

7.1 Language Design — Moderate Steps
It is not yet clear what exact role GQL will play in the development

of graph languages. It could play a role of a pre-SQL language like

QBE [117] or QUEL [104]. Or it could play the role of the first 1986

SQL standard that took a number of years to become what we

know as SQL today. Either way, analyzing the expressive power

and complexity of the current language design (and its abstractions)

has a significant role to play in the development of future versions

of GQL and SQL/PGQ.

Inexpressibility Toolkit. Query languages for property graphs are

still fairly recent and their theoretical analysis has only just begun

(Section 5 presented some early isolated results). The situation is

somewhat similar to the state of finite model theory in the early

days of relational languages. At that time, it produced isolated

results, such as the inexpressibility of parity and transitive closure

in first-order logic, and it took decades to develop a proper toolkit

that allows us to use off-the-shelf tools, such as locality or zero-one

laws, to prove more complex results [77]. Today, we are proving

isolated results about particular graph queries and particular graph

query languages, and the theory community has much to offer to

help build a toolkit for analyzing graph languages at scale.

A Logic for Graphs. Theoretical analysis of relational query lan-

guages often relies on their connection to first-order logic and its

extensions. A logic for graph query languages should give paths a

central role. In standard relational queries, a single domain suffices.

However, graph queries require logic that captures the structure

of paths and their connection to nodes and edges. Standard many-

sorted logic falls short because nodes, edges, and paths are not

independent: Paths are formed from sequences of the two others.

Hence, the logic should include constructs for navigating between

these elements, for example, building a path from nodes and edges,

retrieving path endpoints, etc. Two good starting points are the

walk logic [65], designed for graph querying with support for path

quantification, and the theory of concatenation [96], developed

for strings but potentially adaptable to paths. Since the theory of

concatenation is undecidable, we can consider its finite model coun-

terpart which enjoys efficient model checking and captures various

complexity classes when extended with operators for transitive

closures or fixed point [54].

Evaluation Algorithms. In terms of query evaluation, the new

features bring tons of challenges. Concerning path and list vari-
ables, the recurring story is that studies have looked at single RPQs,
but little is known about CRPQs. For instance, it is interesting to

study how compact representations for RPQ results interact with

joins. But even for single RPQs, there are still interesting avenues

to explore. We mentioned the framework of enumerating one out-

put after another, but one could also study enumerating only the

difference between consecutive outputs. Concerning paths, an in-

teresting direction to look at could be Eppstein’s data structure

for enumerating the 𝑘 shortest paths [39]. Concerning path modes,

the current standards allow combinations, such as returning short-

est concatenations of a trail and a simple path. To the best of our

knowledge, the community has not even started investigating how

to deal with such queries. Concerning data filters, an interesting

next step is to see whether register automata can be extended to

treat both nodes and edges symmetrically, as dl-RPQs do, and to see

how to incorporate list variables into their runs. Of course, the main

question here would be whether efficient enumeration algorithms

could be designed, implemented, and integrated into query engines.

Furthermore, we need to get a better idea of the size of intermediate

query results in practice. Whereas existing practical studies focuses

on structure of queries only [62, 82], we need to get a better idea of

how these interact with the data.

Relational Algebra over Pattern Matching. Languages like GQL
and SQL/PGQ apply relational algebra operators to relations ex-

tracted from graphs via pattern matching. There is a natural in-

terplay between these two layers: some relational operations cor-

respond to constructs in pattern matching, and can be pushed

down to or lifted from the pattern matching layer. Exploring this

interaction can support optimization, e.g., by reducing the size of in-

termediate results (similarly to techniques applied in the context of

document spanners [37, 53]), and provide insights on the expressive

power, e.g., by guiding the development of normal forms of queries.

Another non-trivial question on the intersection with traditional

techniques is how to develop cardinality estimation approaches

for (C)RPQs. Finally, over the last decade we have seen impressive

progress on worst-case optimal evaluation of conjunctive queries,

with the celebrated AGM bound [11] and the subsequent race to-

wards optimal algorithms. For CRPQs we have seen little progress

so far, and some initial results show that it might be a challenging

task [32, 70].

Parametrized Complexity. Aiming to mirror the successful line of

research on conjunctive queries, spanning from the Yannakakis al-

gorithm for evaluating acyclic CQs [115], through various alorithms

for CQs with bounded treewidth and other width measures [26,

58, 60], and culminating in the celebrated dichotomies [27, 59, 88],

23

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

the academic community has been investigating parametrized com-

plexity of CRPQs for over a decade now. Semantic treewidth, i.e.,

the minimal treewidth of an equivalent query, has been proposed

as a candidate criterion to characterize fixed-parameter tractability

of CRPQs [16, 99]. While equivalent queries with optimal treewidth

can be computed and used for efficient query evaluation [42, 46],

no dichotomies have been established so far.

Compositionality. CRPQs are not compositional, in the sense that

they do not allow nesting, and neither are their extensions l-CRPQs

and dl-CRPQs we have considered here. Meanwhile, SQL/PGQ and

GQL allow using Kleene star over arbitrary patterns, which — to-

gether with the ability to use repeated variables for performing

joins — gives them the full power of regular queries [50]. An impor-

tant step in building faithful abstractions of graph query languages

will be then to bring regular queries into the picture. A concrete

challenge is reconciling regular queries with path modes.

Static Analysis. The complexity of query containment, the fun-

damental static analysis problem, is well understood for query

languages working with edge-labeled graphs, such as CRPQs [23,

44, 45, 48] and regular queries [97]; for CRPQs there are even re-

sults on containment in the presence of schema constraints [61].

However, the effect of new features, such as list variables and data

tests, is barely explored [73].

7.2 Language Design Revisited — Big Steps
The first versions of SQL/PGQ and GQL are already standard-

ized [67, 68] and it is unclear if future versions will include major

changes, such as treating nodes and edges symmetrically from the

ground up or making the design of patterns fully compatible with

automata. The latter would help make languages more declarative

and amenable to optimization.

Theoretical research, however, does not need to be tied to com-

patibility with existing standards and can investigate freely how

features such as (a)–(d) from the introduction can be added to

query languages. In fact, theoretical guidance on these matters is

extremely important to avoid ad-hoc solutions with unwanted side

effects. Even if our community’s results may not arrive in time

for current versions of these languages, architectures come and

go [102, 103] and query languages can be revised, but theorems
are forever [108]. We believe that important principles to keep in

mind when designing future (graph) query languages are (1) sym-

metry, (2) compatibility with automata, (3) set semantics, and (4)

compositionality.

Finally, let us mention that, in our experience, input from the

database theory community continues to be appreciated in query

language design efforts. Some of us were involved in the standard-

ization of SQL/PGQ and GQL since the beginning and, while not

having full control, could steer the design towards more sustainable

choices on several occasions. More recently, we were all involved

in the design of Rel [8], a new language that aims at bridging the

gap between query languages and programming in the large, and

supports both relational and graph querying. The design of Rel

takes wisdom from the database theory community seriously —

notably, it uses set semantics — and we are excited to see how it

will evolve in the future.

Acknowledgments
We would like to thank Molham Aref, with whom some of us had

many discussions about language design. Molham’s design princi-

ples, together with our research intuition that regular expressions

should correspond to automata significantly helped to come up

with our definition of (C)RPQs with data tests and list variables

(Sections 3.2.1–3.2.2).

Libkin was supported by ANR project VeriGraph ANR-21-CE48-

0015 and a direct grant from RelationalAI to the IRIF lab. Martens

was supported by DFG grants MA 4938/2–1 and MA 4938/4–1.

Murlak was supported by NCN grant 2018/30/E/ST6/00042. Peter-

freund was supported by ISF grant 2355/24. Vrgoč was supported by

ANID – Millennium Science Initiative Program – Code ICN17_002

and Fondecyt Regular project 1240346.

References
[1] Margareta Ackerman and Jeffrey O. Shallit. 2009. Efficient enumeration of

words in regular languages. Theor. Comput. Sci. 410, 37 (2009), 3461–3470.

doi:10.1016/J.TCS.2009.03.018

[2] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2021.

Constant-Delay Enumeration for Nondeterministic Document Spanners. ACM
Trans. Database Syst. 46, 1 (2021), 2:1–2:30. doi:10.1145/3436487

[3] Antoine Amarilli, Louis Jachiet, Martin Muñoz, and Cristian Riveros. 2022.

Efficient Enumeration for Annotated Grammars. In Symposium on Principles of
Database Systems (PODS). ACM, 291–300. doi:10.1145/3517804.3526232

[4] Antoine Amarilli and Mikaël Monet. 2023. Enumerating Regular Languages

with Bounded Delay. In International Symposium on Theoretical Aspects of Com-
puter Science (STACS) (LIPIcs, Vol. 254). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 8:1–8:18. doi:10.4230/LIPICS.STACS.2023.8

[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plan-

tikow, Juan F. Sequeda, Oskar van Rest, andHannes Voigt. 2018. G-CORE: A Core

for Future Graph Query Languages. In International Conference on Management
of Data (SIGMOD). 1421–1432.

[6] Renzo Angles, Alin Deutsch, Thomas Frisendal, Victor Lee, Roi Lipman, Jeffrey

Lovitz, Petra Selmer, Harsh Thakkar, Oskar van Rest, Mingxi Wu, and Boris

Iordanov. 2019. GQL Influence Graph. gqlstandards.org/existing-languages.

[7] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel Schwabe, Pedro A.

Szekely, and Domagoj Vrgoc. 2022. Multilayer graphs: a unified data model for

graph databases. In Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA). ACM,

11:1–11:6. doi:10.1145/3534540.3534696

[8] Molham Aref, Paolo Guagliardo, George Kastrinis, Leonid Libkin, Victor

Marsault, Wim Martens, Mary McGrath, Filip Murlak, Nathaniel Nystrom,

Liat Peterfreund, Allison Rogers, Cristina Sirangelo, Domagoj Vrgoč, David

Zhao, and Abdul Zreika. 2025. Rel: A Programming Language for Rela-

tional Data. In International Conference on Management of Data (SIGMOD).
doi:10.1145/3722212.3724450

[9] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond

a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the

standard. In World Wide Web Conference (WWW). ACM, 629–638. doi:10.1145/

2187836.2187922

[10] Marcelo Arenas and Jorge Pérez. 2011. Querying semantic web data with

SPARQL. In Symposium on Principles of Database Systems (PODS). ACM, 305–

316. doi:10.1145/1989284.1989312

[11] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query

Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767. doi:10.1137/
110859440

[12] Pablo Barceló Baeza. 2013. Querying graph databases. In Symposium on Principles
of Database Systems (PODS). ACM, 175–188. doi:10.1145/2463664.2465216

[13] Guillaume Bagan, Angela Bonifati, and Benoît Groz. 2020. A trichotomy for

regular simple path queries on graphs. J. Comput. Syst. Sci. 108 (2020), 29–48.
doi:10.1016/J.JCSS.2019.08.006

[14] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. 2012. FDB: A Query

Engine for Factorised Relational Databases. Proc. VLDB Endow. 5, 11 (2012),

1232–1243. doi:10.14778/2350229.2350242

[15] Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012.

Expressive Languages for Path Queries over Graph-Structured Data. ACM Trans.
Database Syst. 37, 4 (2012), 31:1–31:46. doi:10.1145/2389241.2389250

[16] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. 2016. Semantic Acyclicity

on Graph Databases. SIAM J. Comput. 45, 4 (2016), 1339–1376.

24

https://doi.org/10.1016/J.TCS.2009.03.018
https://doi.org/10.1145/3436487
https://doi.org/10.1145/3517804.3526232
https://doi.org/10.4230/LIPICS.STACS.2023.8
https://doi.org/10.1145/3534540.3534696
https://doi.org/10.1145/3722212.3724450
https://doi.org/10.1145/2187836.2187922
https://doi.org/10.1145/2187836.2187922
https://doi.org/10.1145/1989284.1989312
https://doi.org/10.1137/110859440
https://doi.org/10.1137/110859440
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1016/J.JCSS.2019.08.006
https://doi.org/10.14778/2350229.2350242
https://doi.org/10.1145/2389241.2389250

Querying Graph Data: Where We Are and Where To Go PODS Companion ’25, June 22–27, 2025, Berlin, Germany

[17] Henrik Björklund and Thomas Schwentick. 2010. On notions of regularity for

data languages. Theor. Comput. Sci. 411, 4-5 (2010), 702–715. doi:10.1016/J.TCS.
2009.10.009

[18] Mikolaj Bojanczyk and Slawomir Lasota. 2012. An extension of data automata

that captures XPath. Log. Methods Comput. Sci. 8, 1 (2012). doi:10.2168/LMCS-

8(1:5)2012

[19] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.

2009. Two-variable logic on data trees and XML reasoning. J. ACM 56, 3 (2009),

13:1–13:48. doi:10.1145/1516512.1516515

[20] Mikolaj Bojanczyk and Paweł Parys. 2011. XPath evaluation in linear time. J.
ACM 58, 4 (2011), 17:1–17:33. doi:10.1145/1989727.1989731

[21] Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. 2014. How to Best

Nest Regular Path Queries. In International Workshop on Description Logics (DL)
(CEUR Workshop Proceedings, Vol. 1193). CEUR-WS.org, 404–415. https://ceur-

ws.org/Vol-1193/paper_80.pdf

[22] Vicente Calisto, Benjamín Farias, Wim Martens, Carlos Rojas, and Domagoj

Vrgoc. 2024. PathFinder Demo: Returning Paths in Graph Queries. In ISWC
2024 Posters, Demos and Industry Tracks (CEUR Workshop Proceedings, Vol. 3828).
CEUR-WS.org. https://ceur-ws.org/Vol-3828/paper34.pdf

[23] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.

Vardi. 2000. Containment of Conjunctive Regular Path Queries with Inverse. In

International Conference on Principles of Knowledge Representation and Reasoning
(KR). Morgan Kaufmann, 176–185.

[24] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.

Vardi. 2000. View-Based Query Processing for Regular Path Queries with

Inverse. In Symposium on Principles of Database Systems (PODS). ACM, 58–66.

doi:10.1145/335168.335207

[25] Katrin Casel and Markus L. Schmid. 2021. Fine-Grained Complexity of Regular

Path Queries. In International Conference on Database Theory (ICDT) (LIPIcs,
Vol. 186). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1–19:20. doi:10.

4230/LIPICS.ICDT.2021.19

[26] Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment

revisited. Theoretical Computer Science 239, 2 (2000), 211–229.
[27] Hubie Chen, Georg Gottlob, Matthias Lanzinger, and Reinhard Pichler. 2020.

Semantic Width and the Fixed-Parameter Tractability of Constraint Satisfaction

Problems. In International Joint Conference on Artificial Intelligence (IJCAI).
1726–1733.

[28] Edgar F. Codd. 1971. A Database Sublanguage Founded on the Relational

Calculus. In Proceedings of 1971 ACM-SIGFIDET Workshop on Data Description,
Access and Control. ACM, 35–68. doi:10.1145/1734714.1734718

[29] Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: a Visual

Formalism for Real Life Recursion. In Symposium on Principles of Database
Systems (PODS). ACM Press, 404–416. doi:10.1145/298514.298591

[30] World Wide Web Consortium. 2014. RDF 1.1: Resource Description Framework

(RDF) specification. W3C Recommendation. https://www.w3.org/TR/rdf11-

concepts/

[31] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A Graphical

Query Language Supporting Recursion. In International Conference on Manage-
ment of Data (SIGMOD). 323–330. doi:10.1145/38713.38749

[32] Tamara Cucumides, Juan L. Reutter, and Domagoj Vrgoc. 2023. Size Bounds and

Algorithms for Conjunctive Regular Path Queries. In International Conference on
Database Theory (ICDT) (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 13:1–13:17. doi:10.4230/LIPICS.ICDT.2023.13

[33] Claire David, Nadime Francis, and Victor Marsault. 2023. Run-Based Semantics

for RPQs. In International Conference on Principles of Knowledge Representation
and Reasoning (KR). 178–187. doi:10.24963/KR.2023/18

[34] Claire David, Nadime Francis, and Victor Marsault. 2024. Distinct Shortest Walk

Enumeration for RPQs. Proc. ACM Manag. Data 2, 2 (2024), 100. doi:10.1145/
3651601

[35] Alin Deutsch, Nadime Francis, Alastair Green, Keith W. Hare, Bei Li, Leonid

Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip

Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj

Vrgoc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and

SQL/PGQ. In International Conference on Management of Data (SIGMOD). ACM,

2246–2258. doi:10.1145/3514221.3526057

[36] Alin Deutsch and Val Tannen. 2001. Optimization Properties for Classes of

Conjunctive Regular Path Queries. In International Workshop on Database Pro-
gramming Languages (DBPL). Springer, 21–39. doi:10.1007/3-540-46093-4_2

[37] Johannes Doleschal, Benny Kimelfeld, and Wim Martens. 2023. The Complexity

of Aggregates over Extractions by Regular Expressions. Log. Methods Comput.
Sci. 19, 3 (2023). doi:10.46298/LMCS-19(3:12)2023

[38] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank

Neven. 2019. Split-Correctness in Information Extraction. In Symposium on
Principles of Database Systems (PODS). ACM, 149–163. doi:10.1145/3294052.

3319684

[39] David Eppstein. 1998. Finding the k Shortest Paths. SIAM J. Comput. 28, 2 (1998),
652–673. doi:10.1137/S0097539795290477

[40] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2015.

Document Spanners: A Formal Approach to Information Extraction. J. ACM 62,

2 (2015), 12:1–12:51. doi:10.1145/2699442

[41] Benjamín Farias, Wim Martens, Carlos Rojas, and Domagoj Vrgoc. 2024.

PathFinder: Returning Paths in Graph Queries. In International Semantic Web
Conference (ISWC). 135–154. doi:10.1007/978-3-031-77850-6_8

[42] Cristina Feier, Tomasz Gogacz, and Filip Murlak. 2024. Evaluating Graph Queries

Using Semantic Treewidth. In International Conference on Database Theory
(ICDT) (LIPIcs, Vol. 290). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

22:1–22:20. doi:10.4230/LIPICS.ICDT.2024.22

[43] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1997. A

Query Language for a Web-Site Management System. SIGMOD Rec. 26, 3 (1997),
4–11. doi:10.1145/262762.262763

[44] Diego Figueira. 2020. Containment of UC2RPQ: The Hard and Easy Cases. In

International Conference on Database Theory (ICDT) (LIPIcs, Vol. 155). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:18.

[45] Diego Figueira, Adwait Godbole, S. Krishna, Wim Martens, Matthias Niewerth,

and Tina Trautner. 2020. Containment of Simple Conjunctive Regular Path

Queries. In International Conference on Principles of Knowledge Representation
and Reasoning (KR. 371–380. doi:10.24963/KR.2020/38

[46] Diego Figueira and Rémi Morvan. 2023. Approximation and Semantic Tree-

width of Conjunctive Regular Path Queries. In International Conference on Data-
base Theory (ICDT). https://hal.archives-ouvertes.fr/hal-03883042 Secondary

link: https://www.morvan.xyz/papers/main-crpq-tw-icdt-v1.pdf.

[47] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Trans. Database Syst. 45, 1 (2020), 3:1–3:42. doi:10.1145/3351451
[48] Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1998. Query Containment for

Conjunctive Queries with Regular Expressions. In Symposium on Principles of
Database Systems (PODS). ACM Press, 139–148.

[49] Steven Fortune, John Hopcroft, and James Wyllie. 1980. The directed subgraph

homeomorphism problem. Theoretical Computer Science (TCS) 10, 2 (1980),

111–121.

[50] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor

Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,

and Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In

Symposium on Principles of Database Systems (PODS). ACM, 241–250. doi:10.

1145/3584372.3588662

[51] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor

Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,

and Domagoj Vrgoc. 2023. A Researcher’s Digest of GQL (Invited Talk). In

International Conference on Database Theory (ICDT) (LIPIcs, Vol. 255). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:22. doi:10.4230/LIPICS.ICDT.

2023.1

[52] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

In International Conference on Management of Data (SIGMOD). ACM, 1433–1445.

doi:10.1145/3183713.3190657

[53] Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. 2018. Joining

Extractions of Regular Expressions. In Symposium on Principles of Database
Systems (PODS). ACM, 137–149. doi:10.1145/3196959.3196967

[54] Dominik D. Freydenberger and Liat Peterfreund. 2021. The Theory of Concate-

nation over Finite Models. In International Colloquium on Automata, Languages,
and Programming (ICALP) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 130:1–130:17. doi:10.4230/LIPICS.ICALP.2021.130

[55] Amélie Gheerbrant, Leonid Libkin, Liat Peterfreund, and Alexandra Rogova.

2025. Database Theory in Action: Cypher, GQL, and Regular Path Queries. In

International Conference on Database Theory (ICDT) (LIPIcs, Vol. 328). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 36:1–36:5. doi:10.4230/LIPICS.ICDT.

2025.36

[56] Amélie Gheerbrant, Leonid Libkin, Liat Peterfreund, and Alexandra Rogova.

2025. GQL and SQL/PGQ: Theoretical Models and Expressive Power. PVLDB
18, 6 (2025), 1798–1810.

[57] Amélie Gheerbrant, Leonid Libkin, and Alexandra Rogova. 2025. Dangers of List

Processing in Querying Property Graphs. Proc. ACM Manag. Data 3, 3 (2025),
144:1–144:25.

[58] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree Decom-

positions and Tractable Queries. J. Comput. System Sci. 64, 3 (2002), 579–627.
[59] Martin Grohe. 2007. The complexity of homomorphism and constraint satisfac-

tion problems seen from the other side. J. ACM 54, 1 (2007), 1:1–1:24.

[60] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge

Covers. ACM Trans. Algorithms 11, 1, Article 4 (aug 2014).
[61] Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Angélica Ibáñez-García, and

Filip Murlak. 2024. Containment of Graph Queries Modulo Schema. Proc. ACM
Manag. Data 2, 2 (2024), 77. doi:10.1145/3651140

[62] Janik Hammerer andWimMartens. 2025. A Compendium of Regular Expression

Shapes in SPARQL Queries. (2025). Under submission.

25

https://doi.org/10.1016/J.TCS.2009.10.009
https://doi.org/10.1016/J.TCS.2009.10.009
https://doi.org/10.2168/LMCS-8(1:5)2012
https://doi.org/10.2168/LMCS-8(1:5)2012
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1989727.1989731
https://ceur-ws.org/Vol-1193/paper_80.pdf
https://ceur-ws.org/Vol-1193/paper_80.pdf
https://ceur-ws.org/Vol-3828/paper34.pdf
https://doi.org/10.1145/335168.335207
https://doi.org/10.4230/LIPICS.ICDT.2021.19
https://doi.org/10.4230/LIPICS.ICDT.2021.19
https://doi.org/10.1145/1734714.1734718
https://doi.org/10.1145/298514.298591
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1145/38713.38749
https://doi.org/10.4230/LIPICS.ICDT.2023.13
https://doi.org/10.24963/KR.2023/18
https://doi.org/10.1145/3651601
https://doi.org/10.1145/3651601
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1007/3-540-46093-4_2
https://doi.org/10.46298/LMCS-19(3:12)2023
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1145/2699442
https://doi.org/10.1007/978-3-031-77850-6_8
https://doi.org/10.4230/LIPICS.ICDT.2024.22
https://doi.org/10.1145/262762.262763
https://doi.org/10.24963/KR.2020/38
https://hal.archives-ouvertes.fr/hal-03883042
https://www.morvan.xyz/papers/main-crpq-tw-icdt-v1.pdf
https://doi.org/10.1145/3351451
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.4230/LIPICS.ICDT.2023.1
https://doi.org/10.4230/LIPICS.ICDT.2023.1
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3196959.3196967
https://doi.org/10.4230/LIPICS.ICALP.2021.130
https://doi.org/10.4230/LIPICS.ICDT.2025.36
https://doi.org/10.4230/LIPICS.ICDT.2025.36
https://doi.org/10.1145/3651140

PODS Companion ’25, June 22–27, 2025, Berlin, Germany Leonid Libkin, Wim Martens, Filip Murlak, Liat Peterfreund, & Domagoj Vrgoč

[63] Olaf Hartig. 2017. Foundations of RDF★ and SPARQL★ (An Alternative Ap-

proach to Statement-Level Metadata in RDF). In Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management and the Web (AMW)
(CEUR Workshop Proceedings, Vol. 1912). CEUR-WS.org. http://ceur-ws.org/Vol-

1912/paper12.pdf

[64] Olaf Hartig, Pierre-Antoine Champin, Gregg Kellogg, Andy Seaborne, Dörthe

Arndt, Jeen Broekstra, Bob DuCharme, Ora Lassila, Peter F. Patel-Schneider, Eric

Prud’hommeaux, Ted Thibodeau Jr., and Bryan Thompson. 2021. RDF-star and

SPARQL-star. W3C Draft Community Group Report. https://w3c.github.io/rdf-

star/cg-spec/2021-07-01.html

[65] Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, and Xiaowang Zhang. 2013.

Walk logic as a framework for path query languages on graph databases. In

International Conference on Database Theory (ICDT). ACM, 117–128. doi:10.1145/

2448496.2448512

[66] Filip Ilievski, Daniel Garijo, Hans Chalupsky, Naren Teja Divvala, Yixiang Yao,

Craig Milo Rogers, Ronpeng Li, Jun Liu, Amandeep Singh, Daniel Schwabe,

and Pedro A. Szekely. 2020. KGTK: A Toolkit for Large Knowledge Graph

Manipulation and Analysis. In International Semantic Web Conference (ISWC).
Springer, 278–293.

[67] ISO/IEC JTC 1/SC 32. 2023. ISO/IEC 9075-16:2023. Information technology –
Database languages SQL. Part 16: Property Graph Queries (SQL/PGQ). Technical
Report. ISO.

[68] ISO/IEC JTC 1/SC 32. 2024. ISO/IEC 39075:2024. Information technology – Data-
base languages GQL. Technical Report. ISO.

[69] Michael Kaminski and Nissim Francez. 1994. Finite-memory automata. Theoret-
ical Computer Science 134, 2 (1994), 329–363.

[70] Nikolaos Karalis, Alexander Bigerl, Liss Heidrich, Mohamed Ahmed Sherif, and

Axel-Cyrille Ngonga Ngomo. 2024. Efficient Evaluation of Conjunctive Regular

Path Queries Using Multi-way Joins. In International Conference on The Semantic
Web (ESWC). Springer, 218–235. doi:10.1007/978-3-031-60626-7_12

[71] Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, and Dan Suciu. 2024. Output-

Sensitive Evaluation of Regular Path Queries. CoRR abs/2412.07729 (2024).

doi:10.48550/ARXIV.2412.07729 arXiv:2412.07729

[72] Benny Kimelfeld, Wim Martens, and Matthias Niewerth. 2025. A Formal Lan-

guage Perspective on Factorized Representations. In International Conference on
Database Theory (ICDT) (LIPIcs, Vol. 328). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 20:1–20:20. doi:10.4230/LIPICS.ICDT.2025.20

[73] Egor V. Kostylev, Juan L. Reutter, andDomagoj Vrgoc. 2014. Containment of Data

Graph Queries. In Proc. 17th International Conference on Database Theory (ICDT),
Athens, Greece, March 24-28, 2014, Nicole Schweikardt, Vassilis Christophides,
and Vincent Leroy (Eds.). OpenProceedings.org, 131–142. doi:10.5441/002/ICDT.

2014.16

[74] Andrea S. LaPaugh and Christos H. Papadimitriou. 1984. The even-path problem

for graphs and digraphs. Networks 14, 4 (1984), 507–513.
[75] Ora Lassila, Michael Schmidt, Olaf Hartig, Brad Bebee, Dave Bechberger, Willem

Broekema, Ankesh Khandelwal, Kelvin Lawrence, Carlos Manuel López En-

ríquez, Ronak Sharda, and Bryan B. Thompson. 2023. The OneGraph vision:

Challenges of breaking the graph model lock-in. Semantic Web 14, 1 (2023),

125–134. doi:10.3233/SW-223273

[76] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer. doi:10.1007/978-
3-662-07003-1

[77] Leonid Libkin. 2009. The finite model theory toolbox of a database theoretician.

In Symposium on Principles of Database Systems (PODS). ACM, 65–76. doi:10.

1145/1559795.1559807

[78] Leonid Libkin, Wim Martens, and Domagoj Vrgoc. 2016. Querying Graphs with

Data. J. ACM 63, 2 (2016), 14:1–14:53. doi:10.1145/2850413

[79] Leonid Libkin and Domagoj Vrgoc. 2012. Regular path queries on graphs

with data. In International Conference on Database Theory (ICDT). ACM, 74–85.

doi:10.1145/2274576.2274585

[80] Tobias Lindaaker. 2023. Predicates on sequences of edges. Technical Report.

ISO/IEC JTC1/ SC32 WG3:W26-027.

[81] Katja Losemann and WimMartens. 2013. The complexity of regular expressions

and property paths in SPARQL. ACM Trans. Database Syst. 38, 4 (2013), 24.

doi:10.1145/2494529

[82] Wim Martens. 2022. Towards Theory for Real-World Data. In Symposium on
Principles of Database Systems (PODS). ACM, 261–276. doi:10.1145/3517804.

3526066

[83] Wim Martens, Matthias Niewerth, and Tina Popp. 2023. A Trichotomy for

Regular Trail Queries. Log. Methods Comput. Sci. 19, 4 (2023). doi:10.46298/LMCS-

19(4:20)2023

[84] Wim Martens, Matthias Niewerth, Tina Popp, Carlos Rojas, Stijn Vansummeren,

and Domagoj Vrgoc. 2023. Representing Paths in Graph Database Pattern

Matching. Proc. VLDB Endow. 16, 7 (2023), 1790–1803. doi:10.14778/3587136.
3587151

[85] Wim Martens and Tina Popp. 2022. The Complexity of Regular Trail and Simple

Path Queries on Undirected Graphs. In Symposium on Principles of Database
Systems (PODS). ACM, 165–174. doi:10.1145/3517804.3524149

[86] Wim Martens and Tina Trautner. 2018. Evaluation and Enumeration Problems

for Regular Path Queries. In International Conference on Database Theory (ICDT)
(LIPIcs, Vol. 98). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1–19:21.

doi:10.4230/LIPICS.ICDT.2018.19

[87] Wim Martens and Tina Trautner. 2019. Dichotomies for Evaluating Simple

Regular Path Queries. ACM Trans. Database Syst. 44, 4 (2019), 16:1–16:46. doi:10.
1145/3331446

[88] Dániel Marx. 2010. Tractable hypergraph properties for constraint satisfaction

and conjunctive queries. In Symposium on Theory of Computing (STOC). 735–
744.

[89] Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple Paths

in Graph Databases. In Very Large Data Bases. 185–193. http://www.vldb.org/

conf/1989/P185.PDF

[90] Martin Muñoz and Cristian Riveros. 2024. Streaming Enumeration on Nested

Documents. ACM Trans. Database Syst. 49, 4 (2024), 15:1–15:39. doi:10.1145/
3701557

[91] Neo4j. 2025. Cypher Manual. https://neo4j.com/docs/cypher-manual/.

[92] Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query

results: size bounds and readability. In International Conference on Database
Theory (ICDT). ACM, 285–298. doi:10.1145/2274576.2274607

[93] Oracle. [n. d.]. Oracle Graph Database. https://www.oracle.com/database/

graph/.

[94] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and

complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.
[95] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2010. nSPARQL: A navi-

gational language for RDF. J. Web Semant. 8, 4 (2010), 255–270. doi:10.1016/J.
WEBSEM.2010.01.002

[96] Willard V Quine. 1946. Concatenation as a basis for arithmetic. The Journal of
Symbolic Logic 11, 4 (1946), 105–114.

[97] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2017. Regular Queries on

Graph Databases. Theory Comput. Syst. 61, 1 (2017), 31–83. doi:10.1007/S00224-
016-9676-2

[98] Cristian Riveros, Nicolás Van Sint Jan, and Domagoj Vrgoc. 2023. REmatch: a

novel regex engine for finding all matches. Proc. VLDB Endow. 16, 11 (2023),
2792–2804. doi:10.14778/3611479.3611488

[99] Miguel Romero, Pablo Barceló, and Moshe Y. Vardi. 2017. The homomorphism

problem for regular graph patterns. In Symposium on Logic in Computer Science
(LICS). 1–12.

[100] Jacques Sakarovitch. 2009. Elements of automata theory. Cambridge University

Press.

[101] Luc Segoufin. 2013. Enumerating with constant delay the answers to a query.

In International Conference on Database Theory (ICDT). ACM, 10–20.

[102] Michael Stonbraker and Joe Hellerstein. 2005. Readings in Database Systems (4
ed.). Chapter What Goes Around Comes Around, 2–41.

[103] Michael Stonebraker and Andrew Pavlo. 2024. What Goes Around Comes

Around... And Around.. SIGMOD Rec. 53, 2 (2024), 21–37. doi:10.1145/3685980.
3685984

[104] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. 1976. The

Design and Implementation of INGRES. ACM Trans. Database Syst. 1, 3 (1976),
189–222. doi:10.1145/320473.320476

[105] Memgraph Team. 2023. Memgraph. https://memgraph.com/

[106] TigerGraph Team. 2021. TigerGraph Documentation – version 3.1. https:

//docs.tigergraph.com/

[107] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: a property graph query language. In Fourth International Workshop
on Graph Data Management Experiences and Systems. 1–6.

[108] Moshe Vardi. 2006. Personal motto. (2006). Quote published in [113].

[109] Vesoft Inc/Nebula. 2023. NebulaGraph. https://www.nebula-graph.io/

[110] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,

Carlos Buil-Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan

Romero. 2023. MillenniumDB: An Open-Source Graph Database System. Data
Intell. 5, 3 (2023), 560–610. doi:10.1162/DINT_A_00229

[111] W3C Sparql 2012. SPARQL 1.1 Query Language. https://www.w3.org/TR/2012/

WD-sparql11-query-20120105/. World Wide Web Consortium.

[112] W3C Sparql 2013. SPARQL 1.1 Query Language. https://www.w3.org/TR/

sparql11-query/. World Wide Web Consortium.

[113] Marianne Winslett. 2006. Moshe Vardi speaks out on the proof, the whole proof,

and nothing but the proof. SIGMOD Rec. 35, 1 (2006), 56–64. doi:10.1145/1121995.
1122008

[114] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Rec. 41, 1
(2012), 50–60. doi:10.1145/2206869.2206879

[115] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.
82–94.

[116] Fred Zemke. 2024. For each segment discussion. Technical Report. ISO/IEC JTC1/

SC32 WG3:BGI-022.

[117] Moshé M. Zloof. 1977. Query-by-Example: A Data Base Language. IBM Syst. J.
16, 4 (1977), 324–343. doi:10.1147/SJ.164.0324

26

http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1912/paper12.pdf
https://w3c.github.io/rdf-star/cg-spec/2021-07-01.html
https://w3c.github.io/rdf-star/cg-spec/2021-07-01.html
https://doi.org/10.1145/2448496.2448512
https://doi.org/10.1145/2448496.2448512
https://doi.org/10.1007/978-3-031-60626-7_12
https://doi.org/10.48550/ARXIV.2412.07729
https://arxiv.org/abs/2412.07729
https://doi.org/10.4230/LIPICS.ICDT.2025.20
https://doi.org/10.5441/002/ICDT.2014.16
https://doi.org/10.5441/002/ICDT.2014.16
https://doi.org/10.3233/SW-223273
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/1559795.1559807
https://doi.org/10.1145/1559795.1559807
https://doi.org/10.1145/2850413
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1145/2494529
https://doi.org/10.1145/3517804.3526066
https://doi.org/10.1145/3517804.3526066
https://doi.org/10.46298/LMCS-19(4:20)2023
https://doi.org/10.46298/LMCS-19(4:20)2023
https://doi.org/10.14778/3587136.3587151
https://doi.org/10.14778/3587136.3587151
https://doi.org/10.1145/3517804.3524149
https://doi.org/10.4230/LIPICS.ICDT.2018.19
https://doi.org/10.1145/3331446
https://doi.org/10.1145/3331446
http://www.vldb.org/conf/1989/P185.PDF
http://www.vldb.org/conf/1989/P185.PDF
https://doi.org/10.1145/3701557
https://doi.org/10.1145/3701557
https://neo4j.com/docs/cypher-manual/
https://doi.org/10.1145/2274576.2274607
https://www.oracle.com/database/graph/
https://www.oracle.com/database/graph/
https://doi.org/10.1016/J.WEBSEM.2010.01.002
https://doi.org/10.1016/J.WEBSEM.2010.01.002
https://doi.org/10.1007/S00224-016-9676-2
https://doi.org/10.1007/S00224-016-9676-2
https://doi.org/10.14778/3611479.3611488
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/320473.320476
https://memgraph.com/
https://docs.tigergraph.com/
https://docs.tigergraph.com/
https://www.nebula-graph.io/
https://doi.org/10.1162/DINT_A_00229
https://www.w3.org/TR/2012/WD-sparql11-query-20120105/
https://www.w3.org/TR/2012/WD-sparql11-query-20120105/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1145/1121995.1122008
https://doi.org/10.1145/1121995.1122008
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1147/SJ.164.0324

	Abstract
	1 Introduction
	2 Graph Data Models
	3 Query Languages Rooted in Theory
	3.1 Querying Edge-Labeled Graphs
	3.2 Querying Property Graphs

	4 Query Languages: From Practice to Theory
	4.1 CoreGQL
	4.2 CoreGQL vs GQL

	5 Query Language Design: Where We Are
	5.1 What is Missing?
	5.2 Dangers of Ad-Hoc Solutions

	6 Query Language Evaluation: Where We Are
	6.1 Bag Semantics and Recursion: Boom!
	6.2 Automata Techniques to the Rescue
	6.3 New Features Bring New Challenges
	6.4 What We Know

	7 Where To Go: Road Map for Future Research
	7.1 Language Design — Moderate Steps
	7.2 Language Design Revisited — Big Steps

	Acknowledgments
	References

